In this work we provide an experimental workflow of how active enhancers can be identified and experimentally validated.
배아 개발은 많은 유전자의 활성화와 억압을 포함하는 다단계 과정이다. 게놈 인핸서 요소는 세포 분화 동안 유전자 발현의 조직 및 세포 – 유형 특이 조절에 기여하는 것으로 알려져있다. 따라서, 자신의 식별 및 추가 조사는 세포의 운명이 결정되는 방법을 이해하기 위해 중요하다. 유전자 발현 데이터 (예를 들어, 마이크로 어레이 또는 RNA-SEQ) 및 염색질 면역 (칩) 기반 게놈 전체 연구 (칩 SEQ)의 결과의 통합은 이러한 조절 영역의 대규모 식별을 허용한다. 그러나, 세포 형 특정 증강 기능 검증은 생체 외 및 생체 내 실험 절차에 더 필요합니다. 여기에서 우리는 활성 강화제를 식별하고 실험적으로 검증 할 수있는 방법에 대해 설명합니다. 칩 서열 데이터 분석, 2)의 복제 및 EXPER 의해 조절 영역 1) 식별이 프로토콜을 포함하는 단계별 흐름을 제공한다imental 리포터 분석에서 확인 된 게놈 서열의 추정 규제 가능성 검증 및 인핸서 RNA 전 사체 수준을 측정하여 생체 내에서 증강 활성 3) 결정. 제시된 프로토콜은 실험실에서이 워크 플로를 설정하는 사람을 도울 수있을만큼 자세히 설명되어 있습니다. 중요한 것은,이 프로토콜은 쉽게 적응 및 셀룰러 모델 시스템에서 사용될 수있다.
Development of a multicellular organism requires precisely regulated expression of thousands of genes across developing tissues. Regulation of gene expression is accomplished in large part by enhancers. Enhancers are short non-coding DNA elements that can be bound with transcription factors (TFs) and act from a distance to activate transcription of a target gene1. Enhancers are generally cis-acting and most frequently found just upstream of the transcription start site (TSS), but recent studies also described examples where enhancers were found much further upstream, on the 3′ of the gene or even within the introns and exons2.
There are hundreds of thousands of potential enhancers in the vertebrate genomes1. Recent methods based on chromatin immunoprecipitation (ChIP) provide high-throughput data of the whole genome that can be used for enhancer analysis3-9. Though data obtained by ChIP-seq experiments greatly increases the likelihood to identify cell and tissue-specific enhancers, it is important to keep in mind that detected binding sites do not necessarily identify direct DNA binding and/or functional enhancers. Thus, further functional analysis of newly identified enhancers is indispensable. In this work, we present a basic three-step process of putative active enhancer identification and validation. This includes: 1) selection of putative transcription factor binding sites by bioinformatics analysis of ChIP-seq data, 2) cloning and validation of these regulatory sequences in reporter constructs, and 3) measurement of enhancer RNA (eRNA).
Exposure of embryonic stem (ES) cells to retinoic acid (RA) is frequently used to promote neural differentiation of the pluripotent cells 10. RA exerts its effects by binding to RA receptors (RARα, β, γ) and retinoid X receptors (RXRα, β, γ). RARs and RXRs in a form of heterodimer bind to DNA motifs called RA-response elements, that is typically arranged as direct repeats of AGGTCA sequence (called as half site) and regulate transcription. Ligand-treatment experiments allowed the identification of several retinoic acid regulated genes in ES cells 11,12. However, enhancer elements for many of these genes has not been described yet. To demonstrate how the here-described workflow can be used for enhancer identification and validation we show step-by-step the selection and characterization of two retinoic acid-dependent enhancers in embryonic stem cells.
In recent years, advances in sequencing technology have allowed large-scale predictions of enhancers in many cell types and tissues 7-9. The workflow described above allows one to perform primary characterization of candidate enhancers chosen based on ChIP-seq data. The detailed steps and notes will help anyone to set up a routine enhancer validation in the lab.
The most critical step in the luciferase reporter assay is the transfection efficiency. It is recommended to include a GFP…
The authors have nothing to disclose.
The authors would like to acknowledge Dr. Bence Daniel, Matt Peloquin, Dr. Endre Barta, Dr. Balint L Balint and members of the Nagy laboratory for discussions and comments on the manuscript. L.N is supported by grants from the Hungarian Scientific Research Fund (OTKA K100196 and K111941) and co-financed by the European Social Fund and the European Regional Development Fund and Hungarian Brain Research Program – Grant No. KTIA_13_NAP-A-I/9.
KOD DNA polymerase | Merck Millipore | 71085-3 | for PCR amplification of enhancer from gDNA |
DNeasy Blood & Tissue kit | Qiagen | 69504 | for genomic DNA isolation |
QIAquick PCR Purification kit | Qiagen | 28106 | for PCR product purification |
Gel extraction kit | Qiagen | 28706 | for gel extraction if there are more PCR product |
HindIII | NEB | R3104L | restriction enzyme |
BamHI | NEB | R3136L | restriction enzyme |
FastAP | Thermo Scientific | EF0651 | release of 5'- and 3'-phosphate groups from DNA |
T4 DNA ligase | NEB | M0202 | for ligation |
QIAprep Spin Miniprep kit | Qiagen | 27106 | for plasmid isolation |
DMEM | Gibco | 31966-021 | ES media |
FBS | Hyclone | SH30070.03 | ES media |
MEM Non-Essential Amino Acid | Sigma | M7145 | ES media |
Penicillin-Streptomycin | Sigma | P4333 | ES media |
Beta Mercaptoethanol | Sigma | M6250 | ES media |
FuGENE HD | Promega | E2311 | transfection reagent |
Opti-MEM® I Reduced Serum Medium | Life Technologies | 31985-062 | for transfection |
All-trans retinoic acid | Sigma | R2625 | ligand, for activation of RAR/RXR |
96-well clear plate | Greiner | 655101 | for Beta galactosidase assay |
96-well white plate | Greiner | 655075 | for Luciferase assay |
D-luciferin, potassium salt | Goldbio.com | 115144-35-9 | for Luciferase assay |
ATP salt | Sigma | A7699-1G | for Luciferase assay |
MgSO4x 7H2O | Sigma | 230391-25G | for Luciferase assay |
HEPES | Sigma | H3375-25G | for Luciferase assay |
Na2HPO4 x 7H2O | Sigma | 431478-50G | for Beta galactosidase assay |
NaH2PO4 x H2O | Sigma | S9638-25G | for Beta galactosidase assay |
MgSO4 x 7H2O | Sigma | 230391-25G | for Beta galactosidase assay |
KCl | Sigma | P9541-500G | for Beta galactosidase assay |
ONPG (o-nitrophenyl-β-D-galactosidase) | Sigma | N1127-1G | for Beta galactosidase assay |
TRIzol® | Life Technologies | 15596-026 | RNA isolation |
High-Capacity cDNA Reverse Transcription Kit | Life Technologies | 4368814 | reverse transcription of eRNA |
Rnase-free Dnase | Promega | M6101 | Dnase treatment |
SsoFast Eva Green | BioRad | 750000105 | RT-qPCR mastermix |
CFX384 Touch™ Real-Time PCR Detection System | BioRad | qPCR machine | |
BioTek Synergy 4 microplate reader | BioTek | luminescent counter |