This work describes fabrication and characterization of anisotropic leaky mode modulators for holographic video.
Holovideo displays are based on light-bending spatial light modulators. One such spatial light modulator is the anisotropic leaky mode modulator. This modulator is particularly well suited for holographic video experimentation as it is relatively simple and inexpensive to fabricate1-3. Some additional advantages of leaky mode devices include: large aggregate bandwidth, polarization separation of signal light from noise, large angular deflection and frequency control of color1. In order to realize these advantages, it is necessary to be able to adequately characterize these devices as their operation is strongly dependent on waveguide and transducer parameters4. To characterize the modulators, the authors use a commercial prism coupler as well as a custom characterization apparatus to identify guided modes, calculate waveguide thickness and finally to map the device’s frequency input and angular output of leaky mode modulators. This work gives a detailed description of the measurement and characterization of leaky mode modulators suitable for full-color holographic video.
Most holographic display technologies, such as pixelated light valves as well as MEMs devices and bulk wave acousto-optic modulators, are too complex to allow for broad participation in their development. Pixelated modulators, especially those with filter layers and active back planes may require dozens of patterning steps to build5 and may be limited by fan-out6. The greater the number of patterning steps the higher the device complexity, and the tighter the fabrication protocol must be to achieve reasonable device yield7. Bulk-wave acousto-optic modulators do not lend themselves to wafer based processes8,9. Anisotropic leaky mode modulators, however, require only two patterning steps to fabricate and utilize relatively standard microfabrication techniques10,11. The accessibility of these processes make it possible for any institution with modest fabrication facilities to participate in the development of holographic video display technology12.
The simplicity of device fabrication can be beguiling, however, as the proper function of the devices is strongly dependent upon waveguides which must be carefully measured and adjusted to achieve the desired device characteristics. For example, if the waveguide is too deep, the device's operational bandwidth will be narrowed13. If the wave guide is too shallow, the device may not work for red illumination. If the waveguide is annealed too long, the shape of the waveguide's depth profile will be distorted, and the red, green and blue transitions may not sit adjacent in the frequency domain14. In this work the authors present the tools and techniques to perform this characterization.
The leaky mode modulator consists of a proton exchanged waveguide indiffused on the surface of a piezoelectric, x-cut lithium niobate substrate15,16. At one end of the waveguide is an aluminum interdigital transducer, see Figure 1. Light is introduced into the waveguide using a prism coupler17. The transducer then launches surface acoustic waves which interact contralinearly with light in the waveguide along the y-axis. This interaction couples guided light into a leaky mode which leaks out of the waveguide into the bulk and finally exits the substrate from the edge face18,19. This interaction also rotates the polarization from TE polarized guided light to TM polarized leaky mode light. The surface acoustic wave pattern is the hologram, and it is capable of scanning and shaping the output light to form a holographic image.
The waveguide is created by proton exchange. First, aluminum is deposited on the substrate. Then the aluminum is patterned photo-lithographically and etched to expose regions of the substrate to become waveguide channels. The remaining aluminum acts as a hard mask. The substrate is immersed in a melt of benzoic acid which alters the surface index in the exposed regions. The device is removed, cleaned and annealed in a muffle furnace. The final depth of the waveguide determines the number of leaky mode transitions. The waveguide depth also determines the frequency of each guided-to-mode transitions for each color4.
The aluminum transducers are formed by liftoff. After waveguides are formed, an E-beam resist is spun onto the substrate. An interdigital transducer is patterned with an electron beam to form a chirped transducer designed to respond to the 200 MHz band responsible for controlling color in waveguide devices. The finger period is determined by Λƒ = v where, Λ, is the finger period, v, is the velocity of sound in the substrate and, ƒ, is the radio frequency (RF). The transducer will have an impedance that must be matched to 75 ohms for efficient operation20.
The guided to leaky mode interaction occurs at different frequencies for different wavelengths of illumination light and as a result red, green, and blue light can be controlled in the frequency domain. The surface acoustic wave pattern is generated by an RF signal sent to the interdigital transducer. The RF of the input signal translate to spatial frequencies on the surface acoustic wave pattern. The waveguide can be fabricated so that low frequency signals control the angular sweep and amplitude of red light, while middle frequencies control green light and high frequencies control blue light. The authors have identified a set of waveguide parameters that allow all three of these interactions to be separate and adjacent in the frequency domain so that all three colors can be controlled with a single 200 MHz signal which is the maximum bandwidth of commodity graphics processing units (GPUs).
By matching the bandwidth of a GPU channel to that of a leaky mode modulator, the system becomes fully parallel and highly scalable. By adding bandwidth matched pairs of GPUs and leaky mode modulator channels, one may construct holographic displays of arbitrary size.
After the device is created, it is carefully characterized to verify that the frequencies for guided-to-leaky mode transition are appropriate for frequency control of color. First, the location of the guided modes are determined by a commercial prism coupler to confirm that the waveguide has the appropriate depth and the correct number of guided modes. Then, after the devices are mounted and packaged, they are placed in a custom prism coupler which maps the input frequencies of the scanned output light. The resulting data gives the frequency input response and the angular output response for red, green, and blue light for the device to be tested. If the device has been fabricated correctly, the device input response will be separated in frequency and the output response will be overlapping in angle. When this is confirmed, the device is ready for use in a holographic video display.
The first measurements take place before the device has been packaged. The waveguide depth is determined by a commercial prism coupler. This can be accomplished with just one illumination wavelength (typically 632 nm red) but authors have modified their commercial prism coupler to allow it to gather mode information for red, green and blue light. After packaging, the device undergoes a second measurement in a custom prism coupler which records deflected output light as a function of input RF. A detailed description of these measurements follows. Fabrication steps are also given.
1. Initial Preparation
Note: Begin with a new X-cut lithium niobate wafer. It should be optical grade, 1 mm thick, clean, with nothing deposited on the surface, both sides polished, and the top side marked.
2. Proton Exchange
3. Anneal
4. Clean
5. Waveguide Measurements
6. Add Resist
7. Pattern
8. Develop
9. Deposit Aluminum
10. Liftoff Aluminum
11. Polish the End
12. Mount on a Breakout Board
13. Prism Coupling
14. Mount in the Characterization Apparatus
15. Align in the Characterization Apparatus
16. Attach the RF Input and Enclose the Device
17. Run the Provided Testing Program
18. Analyze the Frequency and Angular Output Profiles
The principle results of the protocol above are the guided mode measurement from the commercial prism coupler shown in Figure 2, the single frequency, raw input/output data gathered from the customized prism coupler shown in Figure 8 and the multicolor curves shown in Figure 9. In the following paragraphs we discuss the actionable information produced by each of these outputs.
The guided mode information gleaned from the commercial prism coupler is used, primarily, to establish the waveguide depth, but the number of modes and their spacing contain other useful information relevant to leaky mode operation. For the leaky mode device to work as designed, it must have a guided-to-leaky mode transition for every color, and experimentation has shown this to be true when there exists at least two guided modes for each illumination wavelength. This is particularly relevant for red as it has the fewest guided modes of the three display colors. The proton exchange step 2 should be increased or decreased to make sure there are two red modes. In general, having two modes in red indicates that there are also at least two modes in green and blue. Devices optimized for frequency division multiplexing of color have shown two modes in red, three modes in green and four modes in blue. Fewer modes may appear for green and blue if the anneal time is too long. If fewer than the optimal number of modes appear for green and blue light, then the anneal time in step 3 may need to be extended. Long anneals, however, will also reduce the effective index of the guided modes.
The raw output of the custom prism coupler as shown in Figure 8 gives one a good qualitative sense for a number of important device parameters such as RF bandwidth, angular sweep, scan linearity, spot size, standing wave period and approximate diffraction efficiency. The projection of the data on the Y axis gives the frequency response of the device from which we can read the center frequency and the approximate bandwidth of operation. The projection of the data on the X axis gives span of the diffracted light output. This position information is nearly proportional to the angular sweep of the device output so the projection on this axis is a good indicator of the angular sweep of the device. The slope of the data on the XY plane of the graph gives us a sense of the linearity of the scan as well as the rate of scan with input frequency. If the X axis is sampled with sufficiently high resolution, then a cross section along the X axis will give the beam profile. If the Y axis is sampled with sufficiently high resolution, then surface acoustic standing wave patterns may become apparent- if they are prominent, it may be beneficial to add an acoustic absorber to the device to produce a smooth, even scan. Absolute diffraction efficiency is not measured but when comparing one device to another, the signal to noise ratio serves as a good indicator of relative diffraction efficiency. This raw data provides a significant amount of information, but it is relevant to only one illumination wavelength.
To determine if the device is capable of frequency control of color, raw data is processed for several experiments with all three wavelengths to form graphs like the one in Figure 9. The X and Y axis projections are first collected for the TE1 guided modes for all three colors. Then these projections are superimposed on the angle and frequency axes respectively to form a multicolor frequency and angular response like the one shown. If the response for each color is adjacent in frequency and overlapping in angle, then the device is appropriate for frequency control of color.
By using the characterization steps described in this work, one can both reproduce devices capable of frequency control of color as well as effectively modify their function to meet new optimization criteria such as maximized diffraction efficiency, high signal to noise ratio or high linearity.
Figure 1: Leaky Mode Modulator. As seen on the left, light enters the device through a rutile prism which evanescently couples light into a waveguide indiffused on the substrate's surface. As the guided light propagates toward the far end of the device it encounters surface acoustic waves which outcouple the light from the waveguide and rotate its polarization. The momentum diagram for this interaction is given on the right. Please click here to view a larger version of this figure.
Figure 2: Sample Waveguide Data. Light from the laser is coupled into the prism. It then reflects off the surface of the device and onto a power sensor. When a guided mode is present, instead of reflecting off the device the light is guided through the substrate and out the end of the device. Thus, it is guided away from the power sensor and a sharp "dip" occurs in the plot. There are two modes identified in this plot. The gradually increasing power reading from left to right can be explained by the gradually increasing transmission efficiency at the air to prism boundary. Please click here to view a larger version of this figure.
Figure 3: Sample LOR Development Process. Images of the same area of a device as the LOR is developed. The picture on the far left was taken under a microscope after the initial 25 sec development time. The pictures that follow are a sampling of the changes through the iterative process. The final picture is a close-up of the finer features on the device after LOR development to show the clean edges and the exposure of the underlying substrate. Please click here to view a larger version of this figure.
Figure 4: A Prism Coupled Device Mounted to a Breakout Board. A correctly coupled, completed device mounted to its breakout board. At the proper angle, as in this picture, the wet spot reflects a rainbow of color. Please click here to view a larger version of this figure.
Figure 5: Characterization Apparatus Schematic. Basic diagram of the characterization apparatus. The laser is sent through a series of optical components before being coupled into the device through a prism. Once inside a mode in the waveguide SAW waves produced by interdigital transducers and a RF signal knock the light into leaky modes which exit the device at a frequency controllable angle. A linear actuator drives the power meter through a range of positions while the signal generator runs through a range of frequencies creating multivariable graphs which describe the controllability and output of the device. Please click here to view a larger version of this figure.
Figure 6: Identification Techniques of Proper Light Coupling. Proper coupling can be identified by either the presence of the characteristic streak of light caused by scattering in the waveguide, as shown on the left, or by the characteristic mode lines out of the end of the device, as show on the right. Please click here to view a larger version of this figure.
Figure 7: User Interface for LabView Testing Software. The user interface including all user defined variables. Items boxed in yellow must be updated before each automated test is run in order for the analytical program to run properly. Please click here to view a larger version of this figure.
Figure 8: Sample Frequency vs Position Graph. While the RF input and power meter location are scanned linearly, the experiment software builds and displays this interactive 3D graph of the collected data. Upon completion the current view is saved for quick reference. Please click here to view a larger version of this figure.
Figure 9: Sample Mode Comparison Data. The frequency response of the three wavelengths is shown on the left. The device has a bandwidth of 200 MHz with individual control for each wavelength. On the right is the output angle response for each device. There is good angular overlap for 5-7°. Please click here to view a larger version of this figure.
Wavelength | Mode | Angle |
638 nm | TE0 | 23° |
TE1 | 28° | |
532 nm | TE0 | 26° |
TE1 | 31° | |
TE2 | 32° | |
445 nm | TE0 | 31° |
TE1 | 36° | |
TE2 | 38° | |
TE3 | 39° |
Table 1: Mode Excitation Parameters. Angle and wavelength parameters for desired the TE1 mode excitations for the devices discussed in this document.
The design of each device has two critical steps, proton exchange and development of the LOR. Of the two, proton exchange time determines the depth of the waveguide, which in turn determines the number of guided to leaky mode transitions, the controllable frequency bandwidth, and every key design parameter for each color of light. Two guided modes in red is desired. If more exist then bandwidth is sacrificed. If less exist then no guided to leaky mode transition is guaranteed. Follow the note in step 2.2.1 to correct proton exchange times to achieve the desired result.
Proper LOR development is required for proper liftoff and thereby proper function of the interdigital transducers. It is a step best mastered through experience. A non-dilute solution of developer will blow out the fingers of the transducers in 7 sec while a 50% solution will do the same in about 35 sec. The exact time varies from device to device which creates the need to develop the device for 25 sec in a 50% solution followed by repeated quick exposures to more dilute solutions. If blowout occurs decrease development time or solution concentration to achieve desired results.
In the characterization process prism coupling and alignment are the critical steps. If the device is poorly prism coupled or poorly aligned no light will enter the waveguide making it impossible to measure results. Alignment is best achieved with small adjustments. Variations in the scattered light can indicate the approach to a mode line or show the proximity of the interdigital transducer. Experience is the best teacher.
This protocol is designed for the manufacture of a single device. As such scalability is limited and small variations will be present from device to device. However the authors are actively pursuing the development of a wafer driven manufacture process that will overcome this challenge. Another limitation of this characterization protocol is the reliance on an active testing process. The interdigital transducers must have a large bandwidth to accommodate the changes in the waveguide depth and mode transitions. Once the transition frequencies are determined a narrower bandwidth transducer can be designed. A good model for the process would eliminate the need for this step. Finally, the testing protocol is not completely automatic, requiring human adjustments between changes in wavelength and devices.
Once a device shows both good angular overlap and frequency control, then it is able to be used in such applications as the 3D holovideo display1. These devices require only 2 patterning steps to fabricate which is a large improvement on the common display technologies of today, such as pixelated light valves, MEMs devices, and bulk wave acousto-optic modulators. It is the authors' hope that having access to this manufacture, measurement, and characterization protocol will encourage broader participation in electroholographic display research.
The authors have nothing to disclose.
The authors gratefully acknowledge financial support from Air Force Research Laboratory contract FA8650-14-C-6571 and from DAQRI LLC.
X-Cut Lithium Niobate | Gooch and Housego | 99-00630-01 | Lithium Niobate 3″ Diameter X-CUT Wafer 1mm Polish/Polish |
Positive Photo Resist 1 | EMD Performance Materials | AZ 3330 F Photoresist | Used in the creation of the proton exchange mask. |
Photoresist Developer | EMD Performance Materials | AZ MIF 300 | Develops AZ3330 and LOR 3A |
Aluminium | International Advanced Materials | AL13 | 99.999% Pure |
Aluminium Etch | Transene | Type A Aluminum Etchant | |
Benzoic Acid | Sigma Aldrich | 109479-500G | 99% Pure |
Acetone | Fisher Chemical | UN1009 | |
IPA | Fisher Chemical | UN1219 | 99.5% pure Isopropyl Alcohol |
Acidic Piranha etch | Cyantek Corperation | Nanostrip | |
Under Layer Resist | Micro Chem | LOR 3A | Bottom layer used for liftoff. |
Positive Photo Resist | Micro Chem | 950 PMMA A9 | Top layer used for liftoff |
Anisole | Micro Chem | A Thinner | |
Conductive polymer aqueous solution | Mitsubishi Rayon Company | AquaSAVE | |
MIBK (4-Methyl-2-pentanone) | Sigma Aldrich | 360511 | Develops PMMA |
NMP (1-methyl-2-pyrrolidone) | Sigma Aldrich | 328634 | Used for liftoff |
Name of the Equipment | Company | Catalog Number | Comments/ Description |
E-beam Evaporator | Denton Vacuum | Integrity 20 | Any equivalent equipment would suffice. |
Thin Film Spinner | Laurell Technologies Corporation | WS-400A-6NPP-LITE | Any equivalent equipment would suffice. |
Mask Aligner | Karl Suss America Inc. | MA 150 CC | Any equivalent equipment would suffice. |
Automatic Dicing Saw | Disco Corperation | Disco Dad 320 | Any equivalent equipment would suffice. |
Muffle Furnace | Thermo Scientific | FB1415M | Any equivalent equipment would suffice. |
Electron Microscope | FEI | XL30 ESEM | Any equivalent equipment would suffice. |
Dehydration Oven | Lab-Line Instruments | Ultra-Clean 100 (3497M-3) | Any equivalent equipment would suffice. |
Hot Plate | Thermo Scientific | SP131325 | Any equivalent equipment would suffice. |
Polisher | Ultra Tec Mfg., Inc. | Ultrapol End & Edge Polisher | Any equivalent equipment would suffice. |
Class IIIb 12V RBG Lasers: Wavelengths(nm): 638, 532, and 445 | Bought second-hand. Probably pulled from a laser projector. Any equivalent equipment would suffice. | ||
Signal Generator | Agilent | 8648D | Now found at Keysight. Obsolete. Any equivalent equipment would suffice. Needed Frequency sweep 9 KHz-1000 MHz. |
Signal Amplifier | Mini-Circuits | TB-17 | Necessary only to overcome the limitations of the signal generator. |
Power Meter Controller | ThorLabs | PM100D | With power meter model S130C. Any equivalent equipment would suffice. Needed sensitivity 500pW |
Linear Actuator Controller | Newport | ESP7000 | With linear actuator model MFN25PP. Any equivalent equipment would suffice. Needs 0.1mm accuracy. |
AutomatedDeviceCharacterization.vi | LabView | Experimental Control Software by BYU | Found in the appendix |
CompareWDMmodes.m | MATLab | Analytical Software by BYU | Found in the appendix |