Here, we demonstrate a simple production method for size-controllable, monodisperse, water-in-oil (W/O) microdroplets using a capillary-based centrifugal microfluidic device. This method requires only a small sample volume and enables high-yield production. We expect this method will be useful for rapid biochemical and cellular analyses.
ここでは、キャピラリーベースの遠心マイクロ流体デバイスを用いたサイズ制御可能な単分散、W / Oの微小液滴の急速な生産のための簡単な方法を示しています。 W / O微小滴は、最近小型化化学実験を可能にする強力な方法で使用されてきました。したがって、単分散W / Oの微小液滴を生成する多様な方法を開発することは必要とされています。我々は、毛管系の遠心軸対称共流れるマイクロ流体デバイスに基づいて、単分散W / Oの微小液滴を生成するための方法を開発しました。我々は、キャピラリーオリフィスを調整することにより、微小液滴のサイズを制御することに成功しました。我々の方法は、カプセル化のためのサンプル溶液のみを少量(0.1μl)を必要とする簡単に使用できる他のマイクロ流体技術に比べてある機器を必要とし、毎秒W / Oの微小液滴の数百万の数の生産を可能にします。我々は、この方法は、貴重な生物学のを必要とする生物学的研究を支援することを期待迅速な定量分析の生化学的および生物学的研究のためのサンプルの容量を節約することによってamples。
W / O微小液滴1-5タンパク質合成6、蛋白質結晶7、エマルジ ョンPCR 8,9、細胞カプセル化10、および人工細胞様システム5,6の建設を含む生化学および生物工学の研究のための多くの重要な用途を有します。これらの用途のためにW / Oの微小液滴を生成するために、重要な基準は、W / Oの微小液滴のサイズと単分散性の制御です。単分散、サイズ制御可能にW / O微小液滴11が共同流動法12,13、フローフォーカシング方式14,15、およびマイクロチャネルの中のT-接合法16に基づいています作るためのマイクロ流体デバイス。これらの方法は、高度に単分散W / Oの微小液滴を生成するが、微細加工プロセスは、マイクロチャネルの製造のために複雑な処理及び専門技術を必要とし、また、少なくとも数百サンプル溶液を大量に(必要81; l)のためにマイクロチャネルに試料溶液を行ってシリンジポンプとチューブで避けられない死容積の。したがって、使いやすい、低デッドボリューム法単分散W / Oの微小液滴を生成することが必要です。
本稿では、実験手順の動画と一緒に、セルサイズ、単分散W / Oの微小液滴( 図1)を生成するための遠心キャピラリーベースの軸対称コ流れるマイクロ流体デバイス17を説明します 。この単純な方法は、サイズの単分散性と寸法制御を実現しています。それはちょうど卓上ミニ遠心機とサンプリングマイクロチューブに固定された毛細管ベースの軸対称コ流れるマイクロ流体デバイスを必要とします。我々の方法は、ごく少量(0.1μl)を必要とし、サンプルの任意の有意な量を無駄にしません。
この装置を用いて、単分散W / Oの微小液滴を、ジェット流17のプラトー・レイリー不安定性によって生成されました。顕微鏡検査は、サテライト滴の存在を明らかにしませんでした。デバイスの製造においては、3つの重要なステップが正常に単分散W / Oの微小液滴を生成するために必須です。まず、油界面活性剤水溶液の直進流を供給するためには、4つのディスクのキャピラリ孔は同…
The authors have nothing to disclose.
This work was supported by the PRESTO “Design and Control of Cellular Functions” research area of the Japan Science and Technology Agency (JST), a Grant-in-Aid for Scientific Research of Innovative Areas “Molecular Robotics” (Project No. 24104002) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, Grant-in-Aid for Young Scientists (A) (Project No. 24680033) and Scientific Research (B) (Project No. 26280097) from the Japan Society for the Promotion of Science (JSPS), and the Creative Design for Bioscience and Biotechnology course of the School of Bioscience and Biotechnology at Tokyo Tech.
2-mm-thick polyacetal plastic plate | Tool | Nikkyo Technos, Co., Ltd. (Japan) | 244-6432-08 | |
Milling machine | Tool | Roland DG Co., Ltd. (Japan) | MDX-40A | |
End Mill RSE230-0.5*2.5 | Tool | NS Tool Co., Ltd. (Japan) | 01-00644-00501 | |
M2*40 screws | Tool | Jujo Synthetic Chemistry Labo. (Japan) | 0001-024 | |
Glass Capillry Puller | Tool | Narishige (Japan) | PC-10 | |
Microforge | Tool | Narishige (Japan) | MF-900 | |
Inner Glass Capillary | Tool | Narishige (Japan) | G-1 | |
Outer Glass Capillary | Tool | World Precision Instruments Inc. (USA) | 1B200-6 | |
1.5 ml Sample tube | Tool | INA OPTIKA CO.,LTD (Japan) | ST-0150F | |
Hexadecane | Reagent | Wako Pure Chemical Industries Ltd. (Japan) | 080-03685 | |
Sorbitan monooleate (Span 80) | Reagent | Tokyo Chemical Industry Co., Ltd. (Japan) | S0060 | |
Milli Q system | Reagent | Merck Millipore Corporation (Germany) | ZRQSVP030 | |
Swinging-out-type Mini-centrifuge | Tool | Hitech Co., Ltd. (Japan) | ATT101 | |
Digital Microscope | Tool | KEYENCE Corporation (Japan) | VHX-2001 |