Questo protocollo viene illustrata l’implementazione di un ottimizzato N-metilico-D-glucamine (NMDG) protezione recupero metodo di preparazione di fetta di cervello. Una formulazione di singolo supporto viene utilizzata per ottenere in modo affidabile fette di cervello sano da animali di tutte le età e per diverse applicazioni sperimentali.
Questo protocollo è una guida pratica per la N-metil-D-glucamine (NMDG) protezione recupero metodo di preparazione di fetta di cervello. Numerosi studi recenti hanno convalidato l’utilità di questo metodo per migliorare la conservazione di un neurone e complessiva vitalità di fetta di cervello. L’implementazione di questa tecnica di early adopter ha facilitato le indagini dettagliate in funzione del cervello utilizzando diverse applicazioni sperimentali e che abbracciano una vasta gamma di età degli animali, regioni del cervello e tipi di cellule. Passaggi sono descritti per effettuare la tecnica di fetta di cervello protettivo recupero utilizzando una procedura avanzata e formulazione di media di liquido cerebrospinale artificiale (aCSF) NMDG ottimizzata in modo affidabile ottenere fette di cervello sano per elettrofisiologia di patch clamp. Con questo approccio aggiornato, si osserva un miglioramento sostanziale nella velocità e affidabilità di gigaohm sigillare formazione durante mirati toppa morsetto esperimenti di registrazione mantenendo ottima conservazione neuronale, facilitando in tal modo impegnativo applicazioni sperimentali. Risultati rappresentativi sono forniti dal morsetto del multi-neurone patch registrazione esperimenti test connettività sinaptica nelle fette del cervello neocorticale preparato da giovani topi transgenici adulti e maturi adulti esemplari umani neurochirurgici. Inoltre, il metodo di recupero protettivo NMDG ottimizzato del cervello affettare è compatibile con gli animali sia giovani che adulti, risolvendo così una limitazione della metodologia originale. In sintesi, un singolo supporto formulazione e cervello affettare la procedura può essere implementate attraverso le varie specie ed età per ottenere ottima conservazione di attuabilità e tessuto.
La preparazione di fetta cerebrale acuto è un sistema di modello sperimentale essenziale nell’ambito delle neuroscienze. Circa la metà di un secolo, questa piattaforma ha permesso studi dinamici funzionali del cervello vivente in una vasta gamma di specie animali e regioni anatomiche del cervello. Se l’uso previsto è biochimica, imaging funzionale, morfologia o elettrofisiologia, è della massima importanza per garantire l’integrità ottima e la vitalità del tessuto affettato. È per questo motivo che la preparazione di fetta di cervello del roditore giovanile altamente resiliente (cioè, più giovane di postnatale giorno 30 per topi) è stato il più preferito fino ad oggi. La difficoltà nell’ottenere il cervello sufficientemente sano fette da adulto maturo e animali di invecchiamento ha dimostrato di essere una sfida formidabile per la maggior parte e ha imposto severe limitazioni per studiare l’architettura funzionale del cervello maturo. Ciò è particolarmente vero per il morsetto di patch di registrazione, una tecnica che richiede ottima conservazione morfologica e funzionale ed è indispensabile per la caratterizzazione di proprietà intrinseche e sinaptica dettagliate di singoli neuroni identificati. Per i parecchi decenni passati, la stragrande maggioranza di elettrofisiologi morsetto patch è affidati a un metodo di ‘protezione taglio’ utilizzando saccarosio-sostituiti basso Na+ aCSF1 per la preparazione di fettine di cervello sano da giovanile e in misura molto minore misura, giovani animali adulti. Questo metodo si basa sulla premessa che l’afflusso passivo Na+ e l’ingresso di acqua successive e cella gonfiore durante la fase di taglio fetta è l’insulto predominante che conduce alla scarsa sopravvivenza dei neuroni, specialmente per quei neuroni situato nella strati superficiali che hanno più probabilità di sostenere trauma diretto dal movimento della lama. Tuttavia, il metodo di protezione taglio lascia ancora molto a desiderare per la preparazione di fetta di cervello da animali adulti maturi indipendentemente dalla formulazione particolare aCSF implementato.
Una soluzione semplice ma efficace a questo problema è stato descritto2,3,4,5,6 e chiamato il metodo slice di cervello ‘protettiva recupero’. La versione originale di questo metodo utilizza un aCSF NMDG-sostituiti, come NMDG è stato identificato come il più versatile ed efficace tra vari altri sostituti di ioni del sodio di candidato (tra cui saccarosio, glicerolo, colina e Tris). La formulazione di media è stata ulteriormente migliorata da aggiunta di HEPES resistere l’edema del cervello fetta e fornire più forte pH buffer7, così come l’aggiunta di integratori per contrastare gli effetti dannosi dello stress ossidativo (tabella 1). Empiricamente è stato determinato che un’incubazione di recupero iniziale passo in basso Na+, basso Ca2 +, e alta Mg2 + NMDG aCSF subito dopo cervello adulto tessuto affettare era necessario e sufficiente per migliorato neuronale conservazione su una vasta gamma di regioni del cervello, tipi cellulari e animali età3,5,6.
In particolare, precedenti incarnazioni di che cosa ora è doppiato il metodo di protezione si trovano nella letteratura1,8,9,10,11,12, 13, anche se il pieno potenziale per adulto in età matura e invecchiamento cervello animale fetta e patch clamp registrazione non era riconosciuto o ha dimostrato in queste opere precedenti. Inoltre, sfumate variazioni procedurali continuano ad emergere a sostegno di specifiche applicazioni sperimentali4,14,15,16. L’organo collegiale del lavoro di questi numerosi gruppi di ricerca conferisce elevata fiducia nella robustezza del metodo protettivo recupero per conservazione migliore del tessuto. Il metodo di ripristino protettivo NMDG ora è stata ampiamente adottato e implementato in numerosi studi di ricerca pubblicata utilizzando preparazioni di fetta di cervello animale adulto. Questi studi acuti fetta span neocortical3,17,18, hippocampal15,19,20,21, striatal22 , 23 , 24, mesencefalo25,26,27,28,29e hindbrain30,31,32, 33 , 34 regioni e una varietà di tipi del neurotrasmettitore e del neuromodulatore cui glutamatergic4,30, GABAergici18,20,31,35 ,36, dopaminergici24,29,37,38, colinergici14,37,38, 39, noradrenergico40e serotoninergici27,28 neurotrasmissione. Il metodo è anche adatto per optogenetica controllo dell’attività neuronale in fette derivato da animali transgenici3,39 o a seguito di in vivo iniezioni virale17,27, 28,40,41,42,43, come bene come Ca2 + imaging funzionale di attività neuronale2,44 ,45,46. Analisi di breve termine plasticità4,47,48 e di diverse forme di lungo termine plasticità16,35,48 sono state segnalato. Uno studio recente ha applicato il metodo di recupero protettivo NMDG per facilitare l’ampia e sistematica di sondaggio delle connessioni sinaptiche nella corteccia visiva in fettine di cervello di topo adulto maturo utilizzando la octopatch registrazione configurazione49 — un potente dimostrazione dell’utilità e robustezza di questo metodo. Il metodo di protezione è stato applicato con successo anche in contesti sperimentali precedentemente imprevisti, ad esempio, una migliore conservazione del sistema vascolare e periciti nel cervello adulto corticale fette50, toppa morsetto registrazione da trapiantato popolazioni Interneurone in 1 – 1,5 anni del morbo di Alzheimer del mouse modelli20e un cervello adulto fetta del ricevitore traffico saggio51.
Il seguente protocollo descrive le procedure dettagliate per l’implementazione di un metodo di recupero protettivo NMDG ottimizzato di preparazione di fetta di cervello per migliorare la redditività delle fette del cervello acuto. I principi per una migliore conservazione di un neurone sono discusse, così come dimostrazione dei chiari vantaggi di questa metodologia per complessi multi-neurone toppa morsetto registrazione esperimenti in fettine di cervello di topo transgenico adulto giovane e adulto maturo fette di cervello umano neurochirurgica. Il seguente protocollo è stato convalidato per i topi da 21 giorni a più anni, anche per quanto riguarda esemplari neurochirurgici umani derivati da pazienti adulti.
Na + Spike-in migliora Gigaohm guarnizione formazione e Patch Clamp successo di registrazione
La versione iniziale del metodo protettivo recupero NMDG è stata progettata specificamente per gli animali di invecchiamento e dell’adulto2,5. Alcuni primi utilizzatori hanno anche cercato di applicare questa metodologia giovanile cervello animale per affettare (cioè, topi < 30 giorni di età). Tuttavia, è stato notato che in contrasto con l'eccezionale conservazione neuronale a confermato visivamente con il metodo di ripristino protettivo NMDG in questa fascia di età, formazione guarnizione gigaohm può frequentemente stallo fuori, che conduce al morsetto patch falliti tentativi di registrazione. Un'ipotesi è che NMDG cationi più prontamente sono intrappolati nelle fette del cervello giovanile rispetto a fette del cervello adulto e possono impedire la formazione di tenuta; Tuttavia, guarnizioni gigaohm possono formare prontamente mentre fette del cervello giovanile sono completamente sommerse in aCSF NMDG (dati non mostrati), indicando così che NMDG aCSF per sé non ostacola il gigaohm guarnizione formazione.
La rapida transizione dalla soluzione di Na+ di bassa-alta al completamento del passaggio di recupero del cervello iniziale fetta danneggia le membrane neuronali e perturba il processo di formazione di sigillo. Questo è intuitivo, dato che la transizione da basso a alto Na+, caldo-freddo temperatura e drammatica elevazione del Ca2 + a rapporto Mg2 + portare collettivamente ad una massiccia recrudescenza dell’attività sinaptica spontanea. Questa fase di rimbalzo inibitorio nel cervello affettare procedura rischia di riperfusione dopo un insulto ischemico a specchio. Così, attenuando ulteriormente danno della membrana neuronale nella fase di recupero iniziale che una graduale procedura di spike in Na+ è stata incorporata in cui l’elevazione della concentrazione di Na+ nella camera di incubazione di recupero protettivo NMDG sta lentamente e riproducibile elevato con una tempistica precisa. Come nella procedura di recupero protettivo originale, la dissociazione temporale di Na+ altezza da temperatura e Ca2 +/Mg2 + rapporto altezza è benefica. Ma inoltre, la procedura di spike in Na+ conduce a piccoli aumenti incrementali in concentrazione extracellulare di Na+ sopra i primi punti di tempo e grandi aumenti verso i punti di tempo tardo, che permette di avere il tessuto cerebrale un possibilità di ospitare meglio ai crescenti livelli di Na+ . Questa procedura è che un’alternativa a exchange soluzione graduale controllata da una pompa di perfusione o gravità linee di gocciolamento che portano ad un costante incremento nei livelli di Na+ e richiedono attenzione per afflusso e il deflusso per evitare l’overflow della camera fetta. In particolare, in questo Na+ a spillo-in procedura l’osmolarità della soluzione nella camera di fetta aumenta gradualmente in un periodo di diversi minuti prima che le fette vengono restituite al normale osmolalità soluzione, ma questo non ha influenzato negativamente la salute fetta o la toppa morsetto registrazione di successo. Una soluzione di taglio ad alta osmolalità è stata utilizzata in precedenza per le preparazioni di fetta del midbrain per meglio preservare i neuroni della dopamina per il patch clamp registrazioni57,58, dimostrando così che questo temporaneo iperosmolarità può essere utile in alcuni contesti.
Implementando una procedura ottimizzata che unisce il metodo di ripristino protettivo NMDG e graduale Na+ spike-nel passaggio l’utilità di questa metodologia di fetta di cervello è stato esteso per coprire giovanile attraverso secoli di animale adulti maturi. Questo protocollo aggiornato ora è adatto per una vasta gamma di età animale utilizzando una singola formulazione di aCSF NMDG ottimale e la procedura. Se necessario, la procedura di spike in Na+ può essere applicata con un ritardo progressivamente più e/o il corso di tempo più lento per migliorare la redditività delle fette del cervello dai più vecchi animali e abbiamo fornito una guida di base delle pianificazioni di spike consigliati secondo all’animale di età (Vedi tabella 2). Mentre abbiamo fornito un quadro di base adatto per una vasta gamma di applicazioni, ulteriori passaggi avanzati possono essere esplorati per rafforzare ulteriormente e vitalità e longevità delle fette di cervello da animali di invecchiamento e dell’adulti. Ad esempio, strategie di restauro di glutatione sono particolarmente efficaci in questo senso e possono essere implementate come descritto altrove2,6.
Migliorare la velocità effettiva per sfidare gli esperimenti
L’analisi delle connessioni sinaptiche registrando morsetto patch è un’applicazione esigente che richiede ottima conservazione della struttura di un neurone e la funzione al fine di raggiungere un’elevata affidabilità di successo. Come il numero di neuroni simultaneamente da registrare aumenta linearmente, il livello di difficoltà tecnica sale supra-linearmente. Esistono numerose modalità di guasto, e una delle cause più frequenti di errori è l’incapacità di guarnizioni adeguate gigaohm forma su uno o più delle cellule mirate. Questo può rallentare drammaticamente progressi, in particolare quando tre o più neuroni debbono essere effettuati simultaneamente. Coerente con l’individuazione del più veloce gigaohm guarnizione tempo di formazione con il metodo di recupero protettivo NMDG ottimizzato, c’era un netto miglioramento nel tasso di successo e throughput di registrazione morsetto multi-neurone patch esperimenti con sia adulto transgenici fette di cervello del topo e fette di cervello neurochirurgica umano adulto. Il miglioramento nell’efficienza è quasi certamente attribuibile sia alla formazione di sigillo di gigaohm più rapida e affidabile e la conservazione di un neurone migliorata delle fette con questo protocollo. Questo protocollo si concentra sui benefici in modo esplicito per toppa morsetto applicazioni di registrazione, guadagni simili sono previsti per altre applicazioni impegnative sperimentale dove la vitalità di fetta di cervello è fondamentale.
The authors have nothing to disclose.
Questo lavoro è stato finanziato dall’Istituto Allen for Brain Science. Gli autori desiderano ringraziare i fondatori di Allen Institute, Paul G. Allen e Jody Allen, per la loro visione, incoraggiamento e sostegno. Ringraziamo anche il personale del supporto tecnico di Allen Institute per l’esecuzione di genotipizzazione, allevamento e cura degli animali.
Compresstome VF-200 | Precisionary Instruments | VF-200 | Vibrating tissue slicer (recommended) |
N-methyl-D-glucamine | Sigma Aldrich | M2004 | aCSF constituent |
Sodium Chloride | Sigma Aldrich | S3014 | aCSF constituent |
Potassium Chloride | Sigma Aldrich | P5405 | aCSF constituent |
Sodium Phosphate monobasic dihydrate | Sigma Aldrich | 71505 | aCSF constituent |
Sodium Bicarbonate | Sigma Aldrich | S5761 | aCSF constituent |
HEPES | Sigma Aldrich | H4034 | aCSF constituent |
Glucose | Sigma Aldrich | G7021 | aCSF constituent |
Sodium Ascorbate | Sigma Aldrich | A4034 | aCSF constituent |
Thiourea | Sigma Aldrich | T8656 | aCSF constituent |
Sodium pyruvate | Sigma Aldrich | P5280 | aCSF constituent |
Calcium chloride dihydrate | Sigma Aldrich | C7902 | aCSF constituent |
Magnesium Sulfate heptahydrate | Sigma Aldrich | M1880 | aCSF constituent |
2,2,2-Tribromoethanol | Sigma Aldrich | T48402 | Anesthetic component 1 |
2-methyl-2-butanol | Sigma Aldrich | 240486 | Anesthetic component 2 |
Curved blunt forceps | Fine Science Tools | 11065-07 | Brain dissection tools |
Fine dissecting scissors (supercut) | Fine Science Tools | 14058-09 | Brain dissection tools |
Large heavy duty scissors 7'' | Fine Science Tools | 14000-18 | Brain dissection tools |
Metal spatula | Sigma Aldrich | Z511455-1PAK | Brain dissection tools |
Razor blades | VWR | 89031-954 | Brain dissection tools |
Brain Slice Keeper-4 | Automate Scientific | S-BSK4 | brain slice holding chamber |
nylon netting | Warner Instruments | 64-0198 | For building small slice recovery chambers |
Pyrex glass beakers (250 mL) | VWR | 89090-434 | For building small slice recovery chambers |
35 mm plastic dish, round | VWR | 100488-376 | For building small slice recovery chambers |
Gas diffuser stones (10 µm) | Sigma Aldrich | 59277 | For constant carbogenation (fine bubbles) |
Agarose Type I-B | Sigma Aldrich | A0576 | For embedding brain specimens |
Micro loader tips | Eppendorf | 22491229 | For filling patch clamp electrodes |
Sylgard | VWR | 102092-312 | For making a custom dissecting platform |
Hydrochloric acid | Sigma Aldrich | H1758-100ML | For pH adjustment of media |
Sodium Hydroxide | Sigma Aldrich | 221465-25G | For pH adjustment of media |
Potassium Hydroxide | Sigma Aldrich | 221473 | For pH adjustment of media |
Plastic transfer pipets 3 mL graduated | VWR | 89497-676 | For slice transfer |
Zirconium ceramic injector blades | Cadence Specialty Blades | EF-INZ10 | http://cadenceinc.com/ |
KG-33 borosilicate glass capillary w/filament | King Glass Company | custom quote | ID: 0.87mm, OD 1.50mm |
Biocytin | Sigma Aldrich | B4261 | Intern pipette solution |
Phosphocreatine disodium | Sigma Aldrich | P7936 | Intern pipette solution |
Potassium Gluconate | Sigma Aldrich | G4500-100G | Intern pipette solution |
EGTA | Sigma Aldrich | E3889 | Intern pipette solution |
Mg-ATP | Sigma Aldrich | A9187 | Intern pipette solution |
Na2-GTP | Sigma Aldrich | 51120 | Intern pipette solution |
sucrose | Sigma Aldrich | S0389 | Intern pipette solution |
Heated water bath (2.5L) | VWR | 13491-060 | Miscellaneous |
Filter paper rounds | VWR | 28456-022 | Miscellaneous |
Cyanoacrylate glue | Amazon | B000BQRBO6 | Miscellaneous |
Glass petri dish | VWR | 89000-326 | Miscellaneous |
10X Phosphate buffered saline | Sigma Aldrich | P5493 | Miscellaneous |
30 mL syringes | VWR | BD302832 | Miscellaneous |
1 mL syringes | VWR | BD-309628 | Miscellaneous |
25 5/8 gauge needles | VWR | 89219-292 | Miscellaneous |
Thermomixer (w/1.5 mL tube block) | VWR | 89232-908 | To keep agarose molten |