Summary

Protokoll der elektrochemischen Prüfung und Charakterisierung von aprotische Li-O<sub> 2</sub> Batterie

Published: July 12, 2016
doi:

Summary

A protocol for the electrochemical testing of an aprotic Li-O2 battery with the preparation of electrodes and electrolytes and an introduction of the frequently used methods of characterization is presented here.

Abstract

We demonstrate a method for electrochemical testing of an aprotic Li-O2 battery. An aprotic Li-O2 battery is made of a Li-metal anode, an aprotic electrolyte, and an O2-breathing cathode. The aprotic electrolyte is a solution of lithium salt with aprotic solvent; and porous carbon is commonly used as the cathode substrate. To improve the performance, an electrocatalyst is deposited onto the porous carbon substrate by certain deposition methods, such as atomic layer deposition (ALD) and wet-chemistry reaction. The as-prepared cathode materials are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray absorption near edge structure (XANES). A Swagelok-type cell, sealed in a glass chamber filled with pure O2, is used for the electrochemical test on a battery test system. The cells are tested under either capacity-controlled mode or voltage controlled mode. The reaction products are investigated by electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and Raman spectroscopy to study the possible pathway of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). This protocol demonstrates a systematic and efficient arrangement of routine tests of the aprotic Li-O2 battery, including the electrochemical test and characterization of battery materials.

Introduction

Im Jahr 1996, Abraham und Jiang 1 berichtet die erste reversible nicht-wässrigen Li-O 2 Batterie aus einem porösen Kohlenstoffkathode besteht, einem organischen Elektrolyten und einem Li-Metall – Anode. Seitdem durch extrem hohe theoretische Energiedichte von mehr als die jeder anderen vorhandenen Energiespeichersysteme, die Li-O 2 – Batterie, die durch die Oxidation von Lithium an der Anode und die Reduktion von Sauerstoff an der Kathode einen Stromfluss induziert ( Gesamtreaktion Li + + O 2 + e ↔ Li 2 O 2), hat kürzlich großes Interesse erhalten 1-8.

Ein Kathodenmaterial mit den folgenden Anforderungen für die Bedürfnisse der hohen Leistung von Li-O 2 Batterie gerecht zu werden wäre in der Lage: (1) schnelle Sauerstoffdiffusion; (2) gute elektrische und ionische Leitfähigkeit; (3) hohen spezifischen Oberfläche; und (4) Stabilität. Sowohl die Oberfläche und die Porosität der Kathode sind entscheidend für die. elektrochemische Leistung von Li-Batterien O 2 9-12 Die poröse Struktur erlaubt die Abscheidung von festen Entladungsprodukte aus der Reaktion von Li – Kationen mit O 2 erzeugt wird ; und größere Oberflächen bieten mehr aktive Stellen elektrokatalytischer Partikel aufzunehmen, die die elektrochemischen Reaktionen beschleunigen. Solche Elektrokatalysatoren sind dem Kathodenmaterial durch bestimmte Abscheidungsverfahren gegeben, das auf das Substrat eine starke Haftung bereitstellen und eine gute Kontrolle der Katalysatorpartikel, unter Erhaltung der ursprünglichen porösen Oberflächenstruktur des Substrats. 13-17 Die so hergestellten Materialien werden getestet in Swagelok-Typ – Zellen als Kathode aprotischer Li-O 2 Batterie. Jedoch nur die Leistung der Zelle nicht von der Art der Kathodenmaterialien abhängt, sondern auch von der Art des aprotischen Elektrolyten 18-22 und Li-Metallanode. 23-26 Weitere Einflüsse sind der Menge und Konzentration der Materialien und der pERFAHREN in den Lade- / Entlade-Tests verwendet. Geeignete Bedingungen und Protokolle würden optimieren und die Gesamtleistung der Batterie-Materialien zu verbessern.

Zusätzlich zu den Ergebnissen des elektrochemischen Test kann die Batterieleistung auch durch Charakterisierung der ursprünglichen Materialien und die Reaktionsprodukte untersucht werden. 27-33 Rasterelektronenmikroskopie (SEM) verwendet wird , die Oberflächenmikrostruktur des Kathodenmaterials und der Morphologie zu untersuchen Entwicklung der Entladungsprodukte. Transmissionselektronenmikroskopie (TEM), Röntgenabsorption in der Nähe von Randstruktur (XANES) und Röntgenphotoelektronenspektroskopie (XPS) kann verwendet werden, um die Ultrastruktur, chemischen Zustand zu bestimmen, und die Komponente von Elementen, insbesondere für die der Katalysator-Nanopartikel. Hochenergie-Röntgenbeugung (XRD) zur direkten Identifizierung der kristallinen Entladungsprodukte verwendet. Mögliche Elektrolytzersetzung kann durch abgeschwächte Totalreflexion Fourier-Transformation bestimmt werdenIR (ATR-FTIR) und Raman-Spektren.

Dieser Artikel ist ein Protokoll , das eine systematische und effiziente Anordnung von Routinetests des aprotischen Li-O 2 Batterie, einschließlich der Herstellung von Batteriematerialien und Zubehör, die elektrochemische Leistungsprüfung und Charakterisierung von unberührten Materialien und Reaktionsprodukte zeigt. Die detaillierte Video – Protokoll soll neue Praktiker auf dem Gebiet zu helfen , mit der Leistungsprüfung und Charakterisierung von Li-O 2 Batterien verbunden sind viele häufige Fehler vermeiden.

Protocol

Bitte konsultieren Sie alle relevanten Sicherheitsdatenblätter (MSDS) vor dem Gebrauch. Einige der Chemikalien in diesen Synthesen verwendet werden, sind akut toxisch und krebserregend. Nanomaterialien können zusätzliche Gefahren im Vergleich zu ihren Bulk-Pendant. Bitte alle geeigneten Sicherheitspraktiken verwenden, wenn eine Reaktion Nanokristall einschließlich der Verwendung von technischen Kontrollen (Dunstabzug, Glovebox) und persönliche Schutzausrüstung durchführen (Schutzbrille, Handschuhe, Kittel, in vol…

Representative Results

Abbildung 1a zeigt den Aufbau der Swagelok-Typ Zelle des Li-O 2 Batterietest. Ein Stück Lithiumfolie wird auf einem Stab aus rostfreiem Stahl an dem Anodenende angeordnet. Die poröse Kathode ist offen für reines O 2 durch ein Aluminiumrohr. Glasfaser wird als Separator und einem Absorber von aprotischen Elektrolyt verwendet; und Al-Netz wird als Stromkollektor eingesetzt. Die ganze Swagelok-Typ-Zelle ist in einer Glaskammer mit ultra-hochreinem S…

Discussion

Die Empfindlichkeit von Li-O 2 Batteriesystem für Luft unter Berücksichtigung, insbesondere CO 2 und Feuchtigkeit, viele Schritte in dem Protokoll erforderlich sind , um die Störkomponenten zu reduzieren und um Nebenreaktionen zu vermeiden. Zum Beispiel wird der Swagelok Typ – Zelle in eine Handschuhbox gefüllt mit Ar mit O 2 <0,5 ppm und H 2 O <0,5 ppm zusammengebaut; und alle Kathodenmaterialien, Elektrolytlösungsmittel und Salz, Glasfaser, Swagelok-Teile, und die…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Research at Argonne National Laboratory was funded by U.S. Department of Energy, FreedomCAR and Vehicle Technologies Office. Use of the Advanced Photon Source and research carried out in the Electron Microscopy Center at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Materials

1-Methyl-2-pyrrolidinone (NMP), 99.5% Sigma-Aldrich 328634
Battery test system MACCOR Series 4000 Automated Test System
Dimethyl carbonate (DMC), ≥99% Sigma-Aldrich 517127
Ethyl alcohol, ≥99.5% Sigma-Aldrich 459844
Formaldehyde solution, 37 wt. % in H2O Sigma-Aldrich 252549
Graphitized Carbon black, >99.95% Sigma-Aldrich 699632
Iron(III) chloride (FeCl3), 97% Sigma-Aldrich 157740
Kapton polyimide tubing Cole-Parmer EW-95820-09
Kapton polymide tape Cole-Parmer EW-08277-80
Kapton window film SPEX Sample Prep 3511
Lithium Chip (99.9% Lithium) MTI Corporation EQ-Lib-LiC25
Lithium trifluoromethanesulfonate (LiCF3SO3) Sigma-Aldrich 481548
Palladium hexafluoroacetylacetonate (Pd(hfac)2), 99.9% Aldrich 401471
Poly(vinylidene fluoride) (PVDF) Aldrich 182702
Potassium permanganate (KMnO4), ≥99.0%  Sigma-Aldrich 223468
Sodium hydroxide (NaOH), ≥97.0% Sigma-Aldrich 221465
Tetraethylene glycol dimethyl ether (TEGDME), ≥99% Aldrich 172405
Toray 030 carbon paper ElectroChem Inc. 590637

References

  1. Abraham, K. M., Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1-5 (1996).
  2. Bruce, P. G., Freunberger, S. A., Hardwick, L. J., Tarascon, J. -. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19-29 (2012).
  3. Lu, J., et al. Aprotic and Aqueous Li-O2 Batteries. Chem. Rev. 114, 5611-5640 (2014).
  4. Black, R., Adams, B., Nazar, L. F. Non-Aqueous and Hybrid Li-O2 Batteries. Adv. Energy Mater. 2, 801-815 (2012).
  5. Bruce, P. G., Hardwick, L. J., Abraham, K. M. Lithium-air and lithium-sulfur batteries. MRS Bull. 36, 506-512 (2011).
  6. Christensen, J., et al. A Critical Review of Li/Air Batteries. J. Electrochem. Soc. 159, 1-30 (2012).
  7. Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S., Wilcke, W. Lithium-Air Battery: Promise and Challenges. J. Phys. Chem. Lett. 1, 2193-2203 (2010).
  8. Lu, J., Amine, K. Recent Research Progress on Non-aqueous Lithium-Air Batteries from Argonne National Laboratory. Energies. 6, 6016-6044 (2013).
  9. Ding, N., et al. Influence of carbon pore size on the discharge capacity of Li-O2 batteries. J. Mater. Chem. A. 2, 12433 (2014).
  10. Nimon, V. Y., Visco, S. J., De Jonghe, L. C., Volfkovich, Y. M., Bograchev, D. A. Modeling and Experimental Study of Porous Carbon Cathodes in Li-O2 Cells with Non-Aqueous Electrolyte. ECS Electrochem. Lett. 2, 33-35 (2013).
  11. Ottakam Thotiyl, M. M., Freunberger, S. A., Peng, Z., Bruce, P. G. The Carbon Electrode in Nonaqueous Li-O2 Cells. J. Am. Chem. Soc. 135, 494-500 (2012).
  12. Park, J. -. B., Lee, J., Yoon, C. S., Sun, Y. -. K. Ordered Mesoporous Carbon Electrodes for Li-O2 Batteries. Acs Appl. Mater. Interfaces. 5, 13426-13431 (2013).
  13. Lei, Y., et al. Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: application for rechargeable lithium-O2 battery. Nano Lett. 13, 4182-4189 (2013).
  14. Lu, J., et al. Effect of the size-selective silver clusters on lithium peroxide morphology in lithium-oxygen batteries. Nat. Commun. 5, 4895 (2014).
  15. Lu, J., et al. A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat. Commun. 4, 2383 (2013).
  16. Lu, J., et al. Synthesis and characterization of uniformly dispersed Fe3O4/Fe nanocomposite on porous carbon: application for rechargeable Li-O2 batteries. RSC Adv. 3, 8276-8285 (2013).
  17. Luo, X., et al. Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: an effective electrochemical catalyst for Li-O2 battery. Nanotechnology. 26, 164003 (2015).
  18. Freunberger, S. A., et al. The Lithium-Oxygen Battery with Ether-Based Electrolytes. Angew. Chem. Int. Ed. 50, 8609-8613 (2011).
  19. Laoire, C. O., Mukerjee, S., Abraham, K. M., Plichta, E. J., Hendrickson, M. A. Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium-Air Battery. J. Phys. Chem. C. 114, 9178-9186 (2010).
  20. McCloskey, B. D., Bethune, D. S., Shelby, R. M., Girishkumar, G., Luntz, A. C. Solvents’ Critical Rope in Nonaqueous Lithium-Oxygen Battery Electrochemistry. J. Phys. Chem. Lett. 2, 1161-1166 (2011).
  21. Assary, R. S., et al. Molecular-Level Insights into the Reactivity of Siloxane-Based Electrolytes at a Lithium-Metal Anode. ChemPhysChem. 15, 2077-2083 (2014).
  22. Du, P., et al. Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li-O2 batteries. Phys. Chem. Chem. Phys. 15, 5572-5581 (2013).
  23. Aleshin, G. Y., et al. Protected anodes for lithium-air batteries. Solid State Ion. 184, 62-64 (2011).
  24. Assary, R. S., et al. The Effect of Oxygen Crossover on the Anode of a Li-O2 Battery using an Ether-Based Solvent: Insights from Experimental and Computational Studies. ChemSusChem. 6, 51-55 (2013).
  25. Aurbach, D., Zinigrad, E., Cohen, Y., Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 148, 405-416 (2002).
  26. Dey, A. N. Lithium Anode Film And Organic And Inorganic Electrolyte Batteries. Thin Solid Films. 43, 131-171 (1977).
  27. Lau, K. C., Lu, J., Luo, X., Curtiss, L. A., Amine, K. Implications of the Unpaired Spins in Li-O2 Battery Chemistry and Electrochemistry: A Minireview. ChemPlusChem. 80, 336-343 (2015).
  28. Lau, K. C., et al. Theoretical Exploration of Various Lithium Peroxide Crystal Structures in a Li-Air Battery. Energies. 8, 529-548 (2015).
  29. Black, R., et al. Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization. J. Am. Chem. Soc. 134, 2902-2905 (2012).
  30. Gallant, B. M., et al. Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li-O2 batteries. Energy Environ. Sci. 6, 2518-2528 (2013).
  31. Lu, J., et al. Magnetism in Lithium-Oxygen Discharge Product. ChemSusChem. 6, 1196-1202 (2013).
  32. Xu, J. -. J., Wang, Z. -. L., Xu, D., Zhang, L. -. L., Zhang, X. -. B. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 4, 2438 (2013).
  33. Zhong, L., et al. In Situ Transmission Electron Microscopy Observations of Electrochemical Oxidation of Li2O2. Nano Lett. 13, 2209-2214 (2013).
  34. . . Hitachi S-4700 SEM Training & Reference Guide. , (2015).
  35. . . SEM Hitachi S4700 User Manual. , (2015).
  36. Goldstein, J., et al. . Scanning Electron Microscopy and X-ray Microanalysis. , (2003).
  37. . X-Ray Photoelectron Spectrometer Operation Procedure Available from: https://nanofabrication.4dlabs.ca (2015)
  38. Haasch, R. T., Sardela, M. . Practical Materials Characterization. , 93-132 (2014).
  39. . . JEM-2100F Field Emission Transmission Electron Microscope. , (2015).
  40. Wen, J. -. G., Sardela, M. . Practical Materials Characterization. , 189-229 (2014).
  41. Williams, D. B., Carter, C. B. . Transmission Electron Microscopy. , (2009).
  42. . . Beamline 11-ID-C: High-energy Diffraction Beamline. , (2015).
  43. . . Beamline 11-ID-D: Sector 11 – Time Resolved X-ray Spectroscopy and Scattering. , (2015).
  44. Sardela, M. R., Sardela, M. . Practical Materials Characterization. , 1-41 (2014).
  45. . . Beamline 9-BM-B,C: X-ray Absorption Spectroscopy Beamline. , (2015).
  46. . . Beamline 20-BM-B: X-ray Absorption Spectroscopy Beamline. , (2015).
  47. Bunker, G. . Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy. , (2010).
  48. . . Nicolet FT-IR User’s Guide. , (2015).
  49. . . Nicolet iS5 User Guide. , (2015).
  50. . . Renishaw inVia Raman Microscope Training Notebook. , (2015).
  51. . . Renishaw InVia Quick Operation Summary. , (2015).
  52. Mitchell, R. R., Gallant, B. M., Thompson, C. V., Shao-Horn, Y. All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries. Energy Environ. Sci. 4, 2952-2958 (2011).

Play Video

Cite This Article
Luo, X., Wu, T., Lu, J., Amine, K. Protocol of Electrochemical Test and Characterization of Aprotic Li-O2 Battery. J. Vis. Exp. (113), e53740, doi:10.3791/53740 (2016).

View Video