A protocol is presented for the synthesis and preparation of nanoparticles consisting of electroactive polymers.
A method for the synthesis of electroactive polymers is demonstrated, starting with the synthesis of extended conjugation monomers using a three-step process that finishes with Negishi coupling. Negishi coupling is a cross-coupling process in which a chemical precursor is first lithiated, followed by transmetallation with ZnCl2. The resultant organozinc compound can be coupled to a dibrominated aromatic precursor to give the conjugated monomer. Polymer films can be prepared via electropolymerization of the monomer and characterized using cyclic voltammetry and ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy. Nanoparticles (NPs) are prepared via emulsion polymerization of the monomer using a two-surfactant system to yield an aqueous dispersion of the polymer NPs. The NPs are characterized using dynamic light scattering, electron microscopy, and UV-Vis-NIR-spectroscopy. Cytocompatibility of NPs is investigated using the cell viability assay. Finally, the NP suspensions are irradiated with a NIR laser to determine their effectiveness as potential materials for photothermal therapy (PTT).
Polímeros electroactivos alterar as suas propriedades (cor, condutividade, reactividade, de volume, etc.) na presença de um campo eléctrico. Os tempos de comutação rápidos, tunability, durabilidade e características de polímeros eletroativos leves têm levado a muitas aplicações propostas, incluindo energia alternativa, sensores, eletrocrômicos e dispositivos biomédicos. Polímeros eletroativos são potencialmente úteis como, de peso leve e bateria de condensadores eletrodos flexíveis. 1º Os pedidos de polímeros eletroativos em dispositivos electrocrómicos incluem sistemas de redução de brilho-de edifícios e automóveis, óculos de sol, óculos de proteção, dispositivos de armazenamento ópticos, e têxteis inteligentes. 2-5 janelas inteligentes podem reduzir as necessidades energéticas através do bloqueio de comprimentos de onda específicos de luz on-demand e proteger interiores de casas e automóveis. Têxteis inteligentes pode ser usado em roupas para ajudar a proteger contra a radiação UV. 6 polímeros eletroativos ter alsO começaram a ser utilizados em dispositivos médicos. Entre os polímeros electroactivos utilizados em dispositivos biomédicos, polipirrol (PPy), polianilina (PANI), e poli (3,4-etilenodioxitiofeno) (PEDOT) estão entre os mais comuns. Por exemplo, esses tipos de polímeros são normalmente utilizados como transdutores em dispositivos biossensores 7 Aplicações em administração terapêutica também mostraram-se promissoras.; Estudos demonstraram a libertação de fármacos e proteínas terapêuticas a partir de dispositivos preparados a partir de polímeros electroactivos 8-12. Mais recentemente, polímeros electroactivos têm sido utilizados como agentes terapêuticos em terapia fototérmico. 13-15 Em terapia fototérmico, agentes fototérmicas deve absorver a luz no próximo -infrared (NIR) região (~ 700-900 nm), também conhecida como a janela terapêutica, em que a luz tem a profundidade máxima de penetração no tecido, tipicamente até 1 cm. 16,17 Neste intervalo, cromóforos biológicos, tais como a hemoglobina , oxigenado hemoglobina, lípidos e água têm pouco ou nenhumabsorção, o que permite que a luz penetre facilmente. Quando os agentes fototérmicas absorvem a luz nesta janela terapêutica, o fotoenergia é convertida em energia fototérmico.
Irvin e colaboradores tenham relatado anteriormente bis-eDOT monómeros de benzeno que foram sintetizados utilizando o acoplamento de Negishi alcoxi-substituído. 18 acoplamento de Negishi é um método preferido para a formação da ligação carbono-carbono. Este processo tem muitas vantagens, incluindo o uso de intermediários de organozinco, que são menos tóxicos e tendem a ter uma maior reactividade do que outros compostos organometálicos utilizados. 19,20 compostos de organozinco também são compatíveis com uma vasta gama de grupos funcionais sobre os organohalides. 20 No reacção de acoplamento de Negishi, um organohalide organometálico e estão acoplados através da utilização de um catalisador de paládio (0) como catalisador. 20 No trabalho aqui apresentado, este método de acoplamento cruzado é utilizado na síntese de 1,4-dialcoxi-2,5-bis ( 3,4-ethylenedioxythienyl) Benzemonômeros ne (2 Bedot-B (OR)). Estes monómeros podem então ser facilmente polimerizado electroquimicamente ou quimicamente para produzir polímeros que são candidatos promissores para utilização em aplicações biomédicas.
Os métodos convencionais para a preparação de suspensões poliméricas coloidais em soluções aquosas para aplicações biomédicas envolvem tipicamente a dissolução de polímeros granel seguido por técnicas de evaporação de emulsão ou nanoprecipitação-solvente 21,22. De modo a produzir nanopartículas de poli (Bedot-B (OU) 2) , uma abordagem bottom-up é demonstrado aqui, onde os PN são sintetizados através de polimerização em emulsão situ. Polimerização em emulsão é um processo que é facilmente escaláveis e é um método relativamente rápido para a preparação NP. 22 Estudos utilizando polimerização em emulsão para produzir NPs de outros polímeros electroactivos têm sido relatados para PPy e PEDOT. 15,23,24 PEDOT NPs, por exemplo, foram preparadas usando emulsão de pulverização polymerization. 24 Este método é difícil de reproduzir, e, normalmente, produz partículas micronizadas maiores. O protocolo descrito neste artigo explora a utilização de um método de drop-sonicação para preparar reprodutivelmente NPs de polímero de 100 nm.
Neste protocolo, polímeros eletroativos adaptado para absorver a luz na região do NIR semelhante ao poli relatado anteriormente (Bedot-B (OR) 2) são sintetizados e caracterizados para demonstrar o seu potencial em dispositivos electrocrómicos e como agentes de PPF. Em primeiro lugar, o protocolo para a síntese dos monómeros de acoplamento de Negishi via é descrita. Os monómeros são caracterizados por RMN e espectroscopia de UV-Vis-NIR. A preparação de suspensões coloidais NP através de polimerização em emulsão em meios aquosos oxidativo também é descrito. O procedimento baseia-se num processo de polimerização por emulsão em dois passos anteriormente descrito por Han et al., Que é aplicado aos diferentes monómeros. Um sistema de dois surfactante éutilizado para controlar a monodispersity NP. Um ensaio de viabilidade celular é utilizada para avaliar citocompatibilidade das NPs. Por último, o potencial destes NPS para actuar como transdutores de PTT é demonstrada por irradiação com um laser NIR.
Neste trabalho, o NPS polímeros electroactivos foram sintetizados como agentes potenciais PTT para o tratamento do cancro. A preparação das nanopartículas está descrito, começando com a síntese dos monómeros seguida por polimerização em emulsão. Embora a preparação de PN utilizando polímeros electroactivos tais como pirrole e eDOT foi descrito antes, este documento descreve a preparação de nanopartículas poliméricas começando com monómeros de conjugação prolongados exclusivos, demonstrando que este…
The authors have nothing to disclose.
Este trabalho foi financiado em parte pelo Fundo Texas Tecnologia Emergente (Startup a TB), o Programa de Aperfeiçoamento Texas State University Research, o Texas State University Doutorado Research Fellowship (a TC), a Parceria NSF para Pesquisa e Educação em Materiais (PREM, DMR-1205670), a Fundação Welch (AI-0045), e os Institutos Nacionais de Saúde (R01CA032132).
2 mm diameter platinum working electrode | CH Instruments | CH102 | Polished using very fine sandpaper |
3,4-ethylenedioxythiophene | Sigma-Aldrich | 483028 | Purified by vacuum distillation |
3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) 98% | Alfa Aesar | L11939 | |
505 Sonic Dismembrator | Fisher Scientific™ | FB505110 | 1/8 “ tip and rated at 500 watts |
808 nm laser diode | ThorLabs | L808P1WJ | Rated at 1 W |
Acetonitrile anhydrous 99% | Acros | 61022-0010 | |
Avanti J-26 XPI | Beckman Coulter | 393127 | |
Bromohexane 98% | MP Biomedicals | 202323 | |
Dialysis (100,000) MWCO | SpectrumLabs | G235071 | |
Dimethyl sulfoxide 99% (DMSO) | BDH | BDH1115 | |
Dimethylformamide anhydrous (DMF) 99% | Acros | 326870010 | |
Dodecyl benzenesulfonate (DBSA) | TCI | D0989 | |
Dulbecco’s modified eagle medium (DMEM) | Corning | 10-013 CV | |
EMS 150 TES sputter coater | Electron Microscopy Sciences | ||
Ethanol (EtOH) 100% | BDH | BDH1156 | |
ethyl 4-bromobutyrate (98%) | Acros | 173551000 | |
Ethyl acetate 99% | Fisher | UN1173 | |
Fetal bovine serum (FBS) | Corning | 35-010-CV | |
Helios NanoLab 400 | FEI | ||
Hexane | Fisher | H306-4 | |
Hydrochloric acid (HCl) | Fisher | A142-212 | |
Hydroquinone 99.5% | Acros | 120915000 | |
Hydrozine anhydrous 98% | Sigma-Aldrich | 215155 | |
Indium tin oxide (ITO) coated galss | Delta Technologies | CG-41IN-CUV | 4-8 Ω/sq |
Iron chloride 97% FeCl3 | Sigma-Aldrich | 157740 | |
Magnesium sulfate (MgSO4) | Fisher | 593295 | Dried at 100 oC |
SKOV-3 | ATCC | HTB-26 | |
Methanol | BDH | BHD1135 | |
n-Butlithium (2.5 M) | Sigma-Aldrich | 230707 | Pyrophoric |
Poly(styrenesulfonate-co-malic acid) (PSS-co-MA) 20,000 MW | Sigma-Aldrich | 434566 | |
Potassium carbonate | Sigma-Aldrich | 209619 | Dried at 100 oC |
Potassium hydroxide | Alfa Aesar | A18854 | |
Potassium iodide | Fisher | P410-100 | |
RO-5 stirplate | IKA-Werke | ||
SC4000 IR camera | FLIR | ||
Synergy H4 Hybrid Reader | Biotek | ||
Tetrabutylammonium perchlorate (TBAP) 99% | Sigma-Aldrich | 3579274 | Purified by recrystallization in ethyl acetate |
Tetrahydrofuran anhydrous (THF) 99% | Sigma-Aldrich | 401757 | |
tetrakis(triphenylphosphine) palladium(0) |
Sigma-Aldrich | 216666 | Moisture sensitive |
Thermomixer | Eppendorf | ||
USB potentiostat/galvanostat | WaveNow | AFTP1 | |
Zetasizer Nano Zs | Malvern | Optical Arrangment 175o | |
Zinc chloride (1 M) ZnCl2 | Acros | 370057000 |