A protocol is presented for the synthesis and preparation of nanoparticles consisting of electroactive polymers.
A method for the synthesis of electroactive polymers is demonstrated, starting with the synthesis of extended conjugation monomers using a three-step process that finishes with Negishi coupling. Negishi coupling is a cross-coupling process in which a chemical precursor is first lithiated, followed by transmetallation with ZnCl2. The resultant organozinc compound can be coupled to a dibrominated aromatic precursor to give the conjugated monomer. Polymer films can be prepared via electropolymerization of the monomer and characterized using cyclic voltammetry and ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy. Nanoparticles (NPs) are prepared via emulsion polymerization of the monomer using a two-surfactant system to yield an aqueous dispersion of the polymer NPs. The NPs are characterized using dynamic light scattering, electron microscopy, and UV-Vis-NIR-spectroscopy. Cytocompatibility of NPs is investigated using the cell viability assay. Finally, the NP suspensions are irradiated with a NIR laser to determine their effectiveness as potential materials for photothermal therapy (PTT).
פולימרים electroactive לשנות את תכונותיהם (צבע, מוליכות, תגובתיות, נפח, וכו ') בנוכחות שדה חשמלי. פעמים המיתוג מהירות, tunability, עמידות, ומאפיינים קלים של פולימרים האלקטרו הובילו ליישומים רבים מוצעים, כוללים אנרגיה חלופית, חיישנים, electrochromics, והתקנים ביו-רפואיים. הפולימרים electroactive הם שעשוי להיות שימושיים כאלקטרודות סוללה וקבלים גמישות, קל משקל. 1 יישומים של פולימרים האלקטרו במכשירי electrochromic כוללים מערכות בוהק הפחתה לבניינים וכלי רכב, משקפי שמש, משקפי מגן, התקני אחסון אופטיים, וטקסטיל חכם. 2-5 חכמים חלונות יכולים להפחית את דרישות אנרגיה על ידי חסימת אורכי גל מסוים של אור על פי דרישה והגנת פנים של בתים ומכוניות. חכם טקסטיל ניתן להשתמש בבגדים כדי לסייע בהגנה מפני קרינת UV. יש לי 6 פולימרים electroactive also החל להיות בשימוש במכשירים רפואיים. בין הפולימרים electroactive בשימוש במכשירים ביו-רפואיים, polypyrrole (PPy), polyaniline (פאני), ופולי (3,4-ethylenedioxythiophene) (PEDOT) הם בין הנפוצים ביותר. לדוגמא, אלו סוגים של פולימרים משמשים בדרך כלל כמתמרים במכשירי biosensor גם 7 יישומים במשלוח טיפולי הראו הבטחה.; מחקרים הוכיחו את שחרורו של תרופות וחלבונים טיפוליים מהתקנים שהוכנו מפולימרי electroactive. 8-12 לאחרונה, פולימרים electroactive שימשו כסוכנים טיפוליים בטיפול photothermal. 13-15 בטיפול photothermal, סוכני photothermal חייבים לקלוט אור בליד -infrared אזור (ניר) (~ 700-900 ננומטר), הידוע גם בחלון הטיפולי, שבו אור יש עומק המרבי של חדירה ברקמה, בדרך כלל עד 1 סנטימטר. 16,17 בטווח זה, chromophores ביולוגי כגון המוגלובין , יש לי המוגלובין, שומנים, מים וחומצן קטנים ללאהספיגה, המאפשרת לאור לחדור בקלות. כאשר סוכני photothermal לקלוט אור בחלון טיפולי זו, photoenergy מומר לאנרגיית photothermal.
ארווין ועמיתים לעבודה שדווחו בעבר alkoxy-הוחלפו מונומרים בנזן BIS-מעדות שהיו מסונתזים באמצעות צימוד Negishi. 18 צימוד Negishi הוא שיטה מועדפת לקשר פחמן-פחמן היווצרות. תהליך זה יש יתרונות רבים, כוללים השימוש בחומרי ביניים organozinc, שהם פחות רעילים ונוטים להיות תגובתיות גבוהה מorganometallics האחר המשמשת. 19,20 תרכובות Organozinc הן גם תואמות עם מגוון רחב של קבוצות פונקציונליות על organohalides. 20 ב תגובת צימוד Negishi, organohalide וorganometal הם מצמידים באמצעות פלדיום (0) זרז. 20 בעבודה שהוצגה במסמך זה, שיטת צימוד צולבת זו מנוצלת בסינתזה של 1,4-2,5-BIS dialkoxy ( 3,4-ethylenedioxythienyl) benzene (BEDOT-B (OR) 2) מונומרים. אז יכולים להיות polymerized מונומרים אלה בקלות אלקטרוכימי או כימי להניב פולימרים שהם מועמדים מבטיחים לשימוש ביישומים ביו-רפואיים.
שיטות מקובלות להכנת השעיות פולימרים קולואידים בתמיסות מימיות עבור יישומים ביו-רפואיים בדרך כלל כרוכות בפירוק של פולימרים בתפזורת ואחריו טכניקות אידוי nanoprecipitation או תחליב-ממס. 21,22 על מנת לייצר צירופים של פולי (BEDOT-B (OR) 2) , גישה מלמטה למעלה מודגמת כאן שם הצירופים ומסונתזים באמצעות בפילמור תחליב אתר. פילמור התחליב הוא תהליך שהוא להרחבה בקלות והיא שיטה מהירה יחסית להכנת NP. 22 מחקרים באמצעות פילמור התחליב לייצר צירופים של פולימרים האלקטרו אחרים דווחו לPPy וPEDOT. 15,23,24 צירופים וPEDOT, למשל, הוכן באמצעות p תחליב ספרייolymerization. 24 שיטה זו היא קשה לשחזר, ובדרך כלל תשואות חלקיקים גדולים יותר, בגודל מיקרון. הפרוטוקול המתואר במאמר זה בוחן את השימוש בשיטת הטיפה-sonication להכין reproducibly צירופים ופולימר 100 ננומטר.
בפרוטוקול זה, פולימרים electroactive מותאמים לקלוט אור באזור ניר דומה לפולי שדווחו בעבר (BEDOT-B (OR) 2) מסונתזים ומאופיין להפגין את הפוטנציאל שלהם במכשירי electrochromic וכסוכני PTT. ראשית, הפרוטוקול לסינתזה של מונומרים באמצעות צימוד Negishi מתואר. מונומרים מאופיינים באמצעות NMR וספקטרוסקופיה UV-Vis-ניר. ההכנה של מתלי קולואיד NP באמצעות פילמור תחליב חמצוני בתקשורת מימית מתוארת גם. ההליך מבוסס על תהליך פילמור שני שלבים שתואר קודם לכן על ידי תחליב אל האן ואח. שמוחל על מונומרים השונים. מערכת דו-שטח היאמשמש לשליטה monodispersity NP. Assay כדאיות תא משמש להערכת cytocompatibility של הצירופים ו. לבסוף, את הפוטנציאל של צירופים ואלה לפעול כמתמרים PTT לידי ביטוי על ידי הקרנה עם לייזר ניר.
בעבודה זו, צירופים ופולימר electroactive היו מסונתזים כסוכני PTT פוטנציאל לטיפול בסרטן. ההכנה של הצירופים ומתוארים, החלה בסינתזה של מונומרים אחרי פילמור תחליב. בעוד הכנת צירופים ובאמצעות פולימרים electroactive כגון מעדות וpyrrole תוארה קודם, מאמר זה מתאר את ההכנה של צירופים ופולימרי?…
The authors have nothing to disclose.
עבודה זו מומנה בחלקו על ידי קרן טקסס Emerging Technology (אתחול לשחפת), מדינה באוניברסיטת מחקר תכנית שיפור טקסס, מדינת אוניברסיטת דוקטורט מחקר טקסס (לTC), שותפות NSF למחקר ולחינוך בחומרים (PREM, DMR-1205670), קרן וולש (AI-0045), והמכונים לאומי לבריאות (R01CA032132).
2 mm diameter platinum working electrode | CH Instruments | CH102 | Polished using very fine sandpaper |
3,4-ethylenedioxythiophene | Sigma-Aldrich | 483028 | Purified by vacuum distillation |
3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) 98% | Alfa Aesar | L11939 | |
505 Sonic Dismembrator | Fisher Scientific™ | FB505110 | 1/8 “ tip and rated at 500 watts |
808 nm laser diode | ThorLabs | L808P1WJ | Rated at 1 W |
Acetonitrile anhydrous 99% | Acros | 61022-0010 | |
Avanti J-26 XPI | Beckman Coulter | 393127 | |
Bromohexane 98% | MP Biomedicals | 202323 | |
Dialysis (100,000) MWCO | SpectrumLabs | G235071 | |
Dimethyl sulfoxide 99% (DMSO) | BDH | BDH1115 | |
Dimethylformamide anhydrous (DMF) 99% | Acros | 326870010 | |
Dodecyl benzenesulfonate (DBSA) | TCI | D0989 | |
Dulbecco’s modified eagle medium (DMEM) | Corning | 10-013 CV | |
EMS 150 TES sputter coater | Electron Microscopy Sciences | ||
Ethanol (EtOH) 100% | BDH | BDH1156 | |
ethyl 4-bromobutyrate (98%) | Acros | 173551000 | |
Ethyl acetate 99% | Fisher | UN1173 | |
Fetal bovine serum (FBS) | Corning | 35-010-CV | |
Helios NanoLab 400 | FEI | ||
Hexane | Fisher | H306-4 | |
Hydrochloric acid (HCl) | Fisher | A142-212 | |
Hydroquinone 99.5% | Acros | 120915000 | |
Hydrozine anhydrous 98% | Sigma-Aldrich | 215155 | |
Indium tin oxide (ITO) coated galss | Delta Technologies | CG-41IN-CUV | 4-8 Ω/sq |
Iron chloride 97% FeCl3 | Sigma-Aldrich | 157740 | |
Magnesium sulfate (MgSO4) | Fisher | 593295 | Dried at 100 oC |
SKOV-3 | ATCC | HTB-26 | |
Methanol | BDH | BHD1135 | |
n-Butlithium (2.5 M) | Sigma-Aldrich | 230707 | Pyrophoric |
Poly(styrenesulfonate-co-malic acid) (PSS-co-MA) 20,000 MW | Sigma-Aldrich | 434566 | |
Potassium carbonate | Sigma-Aldrich | 209619 | Dried at 100 oC |
Potassium hydroxide | Alfa Aesar | A18854 | |
Potassium iodide | Fisher | P410-100 | |
RO-5 stirplate | IKA-Werke | ||
SC4000 IR camera | FLIR | ||
Synergy H4 Hybrid Reader | Biotek | ||
Tetrabutylammonium perchlorate (TBAP) 99% | Sigma-Aldrich | 3579274 | Purified by recrystallization in ethyl acetate |
Tetrahydrofuran anhydrous (THF) 99% | Sigma-Aldrich | 401757 | |
tetrakis(triphenylphosphine) palladium(0) |
Sigma-Aldrich | 216666 | Moisture sensitive |
Thermomixer | Eppendorf | ||
USB potentiostat/galvanostat | WaveNow | AFTP1 | |
Zetasizer Nano Zs | Malvern | Optical Arrangment 175o | |
Zinc chloride (1 M) ZnCl2 | Acros | 370057000 |