approcci optogenetic sono ampiamente utilizzati per manipolare l'attività neurale e valutare le conseguenze per le funzioni cerebrali. Qui, una tecnica è descritto che dopo espressione in vivo dell'attivatore ottica channelrhodopsin, consente ex vivo analisi delle proprietà sinaptici di specifici gittata e connessioni neurali locali in circuiti paura correlati.
approcci optogenetic sono ora ampiamente usati per studiare la funzione di popolazioni neuronali e circuiti combinando espressione mirata di proteine luce-attivati e successiva manipolazione dell'attività neurale dalla luce. Channelrhodopsins (CHRS) sono cationi canali luce-dipendenti e quando fuso con una proteina fluorescente loro espressione permette la visualizzazione e l'attivazione simultanea di specifici tipi cellulari e le loro proiezioni assonale in aree definite del cervello. Via iniezione stereotassica di vettori virali, proteine di fusione CHR possono essere costitutivamente o condizionatamente espressi in cellule specifiche di una regione del cervello definito, e le loro proiezioni assonale possono essere successivamente studiato anatomicamente e funzionalmente via ex vivo attivazione optogenetic in fettine di cervello. Questo è di particolare importanza quando si punta a capire le proprietà sinaptiche di connessioni che non potevano essere affrontate con approcci convenzionali di stimolazione elettrica, o per identificare romanzo affeaffitto e connettività efferente che è stato precedentemente poco conosciuta. Qui, alcuni esempi illustrano come questa tecnica può essere applicata per studiare queste domande a chiarire i circuiti paura legate nell'amigdala. L'amigdala è una regione chiave per l'acquisizione e l'espressione di paura, e lo stoccaggio di memorie emozionali paura e. Molte linee di evidenza suggeriscono che la corteccia prefrontale mediale (mPFC) partecipa a diversi aspetti di acquisizione paura e l'estinzione, ma la sua connettività preciso con l'amigdala è appena iniziando a essere capito. In primo luogo, si mostra come ex vivo di attivazione optogenetic può essere utilizzato per studiare gli aspetti della comunicazione sinaptica tra le afferenze mPFC e cellule bersaglio nell'amigdala basolaterale (BLA). Inoltre, è illustrato come questo approccio optogenetic ex vivo può essere applicato per valutare modelli di connettività nuovi utilizzando un gruppo di neuroni GABAergici nell'amigdala, il cluster paracapsular intercalate cellule (mpITC), come esempio.
strumenti precisi per la visualizzazione e l'attivazione simultanea di connessioni specifiche tra aree cerebrali e specifici tipi di neuroni stanno diventando sempre più importante per capire le connettività funzionale sottostanti sani stati funzioni cerebrali e malattie. Idealmente, questo comporta indagini fisiologica di precise proprietà sinaptiche con cui i neuroni comunicano identificati. Ciò è particolarmente vero per i collegamenti tra aree cerebrali che non possono essere conservati in una sola fetta cerebrale acuto. In passato, questo è stato ampiamente raggiunto in esperimenti separati. Da un lato, traccianti neurali iniettate in vivo sono stati impiegati in combinazione con conseguente leggero o analisi al microscopio elettronico di partner pre e post-sinaptici. D'altra parte, quando tratti di fibre provenienti dalla regione di origine sono conservati e accessibili nella preparazione fetta, stimolazione elettrica è stato usato per valutare i meccanismi di comunicazione sinaptici con celle nella regione di destinazione.
Con l'avvento della optogenetics, l'espressione mirata di cationi canali luce-dipendenti, come Channelrhodopsins (CHRS) fuso con proteine fluorescenti, consente ora di attivazione dei neuroni e loro traiettorie assonale pur consentendo la loro visualizzazione e post-hoc analisi anatomica 1- 4. Perché assoni CHR-esprimono possono essere stimolati anche se isolate dal genitore somata 5, è possibile in fettine di cervello a: 1) valutare ingressi da regioni cerebrali che non erano accessibili con la stimolazione elettrica convenzionale, in quanto tratti di fibre non sono separabili o la traiettoria specifica non è noto; 2) in modo inequivocabile identificare la regione di origine per gli ingressi specifici che sono stati postulate ma non completamente compresi; e 3) studiare la connettività funzionale tra i tipi di cellule definite, sia a livello locale e nelle proiezioni a lungo raggio. A causa di una serie di vantaggi, questa mappatura optogenetic di circuiti in fettine cerebrali è diventato ampiamente utilizzato negli ultimi anni, e una varietà di vettori virali per l'espressione di CHRS fluorescenti-taggato sono prontamente disponibili da fornitori commerciali. Alcuni vantaggi chiave di attivazione optogenetic sopra stimolazione elettrica convenzionale sono danni al tessuto a causa di posizionamento di elettrodi di stimolazione, la specificità della stimolazione fibra, perché la stimolazione elettrica può altresì assumere fibre di passaggio o di altre cellule vicine, e una stimolazione altrettanto rapido e temporalmente precisi. Inoltre, l'iniezione stereotassica di vettori virali può facilmente essere mirati a specifiche aree cerebrali 6 e specifica espressione condizionale o cellula-tipo può essere ottenuto utilizzando l'espressione Cre-dipendente e / o promotori specifici 7. Qui, questa tecnica viene applicata per la mappatura di lungo raggio e circuiti locali nel sistema paura.
L'amigdala è una regione chiave per l'acquisizione e l'espressione di paura, e lo stoccaggio di memorie emozionali 8,9 paura e. Oltre from l'amigdala, la corteccia prefrontale mediale (mPFC) e l'ippocampo (HC), strutture che sono reciprocamente collegati al amigdala, sono implicati in aspetti di acquisizione, il consolidamento e il recupero di paura e di estinzione ricordi 10,11. Attività in suddivisioni del mPFC sembra giocare un doppio ruolo nel controllare sia alta e bassa la paura afferma 12,13. Questo potrebbe in parte essere mediato da collegamenti diretti da mPFC all'amigdala che avrebbe controllato l'attività e l'uscita amigdala. Pertanto, negli ultimi anni, diversi studi hanno iniziato a ex vivo esperimenti fetta di indagare le interazioni sinaptiche tra afferenze mPFC e cellule bersaglio specifici nell'amigdala 14-17.
Durante l'apprendimento la paura, le informazioni sensoriali sulla stimoli condizionati e incondizionati raggiunge l'amigdala attraverso proiezioni specifiche regioni del talamo e corticali. Plasticità di questi ingressi ai neuroni nella parte laterale (LA) del Basolamigdala ateral (BLA) è un importante meccanismo alla base condizionamento alla paura 9,18. Una crescente evidenza suggerisce che i processi di plastica paralleli nell'amigdala coinvolgono elementi inibitori per il controllo della memoria timore 19. Un gruppo di neuroni inibitori cluster sono i mediale paracapsular intercalate cellule GABAergici (mpITCs), ma la loro connettività e precisa funzione non è completamente compresa 20-22. Qui, la mappatura del circuito optogenetic viene utilizzato per valutare la connettività afferenti ed efferenti di queste cellule e il loro impatto sui neuroni bersaglio nell'amigdala, dimostrando che mpITCs ricevono input sensoriali direttamente dalle stazioni talamici e corticali relè 23. espressione specifica del CHR mpITCs o neuroni BLA permette la mappatura delle interazioni locali, rivelando che mpITCs inibiscono, ma sono anche reciprocamente attivato, BLA neuroni principali, mettendoli in nuovi circuiti inibitori feed-forward e retroazione che controllano efficacemente l'attività BLA23.
Questo protocollo descrive un metodo per ex vivo indagini optogenetic dei circuiti neurali e la connettività locale che può essere facilmente implementato sulla maggior parte, se non tutti, in posizione verticale fetta configurazioni di registrazione patch-clamp dotandoli di un ~ 470 LED al porto luce epifluorescenza nm. Uno dei principali vantaggi della stimolazione optogenetic di proiezioni assonale in fette è che permette l'attivazione e ricerca di proprietà di connessioni non accessibili con stimola…
The authors have nothing to disclose.
We thank Cora Hübner and Andrea Gall for help in acquiring some of the representative results. This work was supported by the Werner Reichardt Centre for Integrative Neuroscience (CIN) at the University of Tuebingen, an Excellence Initiative funded by the Deutsche Forschungsgemeinschaft (DFG) within the framework of the Excellence Initiative (EXC 307), and by funds from the Charitable Hertie Foundation.
Surgery | |||
Stereotactic frame | Stoelting, USA | 51670 | can be replaced by other stereotactic frame for mice |
Steretoxic frame mouse adaptor | Stoelting, USA | 51625 | |
Gas anesthesia mask for mice | Stoelting, USA | 50264 | no longer available, replaced by item no. 51609M |
Pressure injection device, Toohey Spritzer | Toohey Company, USA | T25-2-900 | other pressure injection devices (e.g. Picospritzer) can be used |
Kwik Fill glass capillaries | World Precision Instruments, Germany | 1B150F-4 | |
Anesthesia machine, IsoFlo | Eickemeyer, Germany | 213261 | |
DC Temperature Controler and heating pad | FHC, USA | 40-90-8D | |
Horizontal Micropipette Puller Model P-1000 | Sutter Instruments, USA | P-1000 | |
Surgical tool sterilizer, Sterilizator 75 | Melag, Germany | 08754200 | |
rAAV-hSyn-ChR2(H134R)-eYFP (serotype 2/9) | Penn Vector Core, USA | AV-9-26973P | |
rAAV-CAGh-ChR2(H134R)-mCherry (serotype 2/9) | Penn Vector Core, USA | AV-9-20938M | |
rAAV-EF1a-DIOhChR2(H134R)-YFP (serotype 2/1) | Penn Vector Core, USA | AV-1-20298P | |
fast green | Roth, Germany | 0301.1 | |
Isoflurane Anesthetic, Isofuran CP (1ml/ml) | CP Pharma, Germany | ||
Antiseptic, Betadine (providone-iodine) | Purdure Products, USA | BSOL32 | can be replaced by other disinfectant |
Analgesic, Metacam Solution (5mg/ml meloxicam) | Boehringer Ingelheim, Germany | can be replaced by other analgesics | |
Bepanthen eye ointment | Bayer, Germany | 0191 | can be replaced by other eye ointment |
Drill NM3000 (SNKG1341 and SNIH1681) | Nouvag, Switzerland | ||
Sutranox Suture Needle | Fine Science Tools, Germany | 12050-01 | |
Braided Silk Suture | Fine Science Tools, Germany | 18020-60 | |
Recordings, light stimulation, and analysis | |||
artificial cerebrospinal fluid (ACSF) | for composition see references #16 and #23 | ||
internal patch solutions | for composition see references #16 and #23 | ||
MagnesiumSulfate Heptahydrate | Roth, Germany | P027.1 | prepare 2M stock solution in purified water |
Slicer, Microm HM650V | Fisher Scientific, Germany | 920120 | |
Cooling unit for tissue slicer, CU65 | Fisher Scientific, Germany | 770180 | |
Sapphire blade | Delaware Diamond Knives | custom order, inquire with company | |
Stereoscope, SZX2-RFA16 | Olympus, Japan | ||
Xcite fluorescent lamp (XI120Q-1492) | Lumen Dynamics Group, Canada | 2012-12699 | |
Patch microscope, BX51WI | Olympus, Japan | ||
Multiclamp 700B patch amplifier | Molecular Devices, USA | ||
Digitdata 1440A | Molecular Devices, USA | ||
PClamp software, Version 10 | Molecular Devices, USA | used to control data acquisition and stimulation | |
Bath temperature controler, TC05 | Luigs & Neumann, Germany | 200-100 500 0145 | |
Three axis micromanipulator Mini 25 | Luigs & Neumann, Germany | 210-100 000 0010 | |
Micromanipulator controller SM7 | Luigs & Neumann, Germany | 200-100 900 7311 | |
glass capillaries for patch pipettes | World Precision Instruments, Germany | GB150F-8P | |
Cellulose nitrate filterpaper for interface chamber | Satorius Stedim Biotech, Germany | 13006–50—-ACN | |
LED unit, CoolLED pE | CoolLED, UK | 244-1400 | CoolLED or USL 70/470 and appropriate adapters are two alternative choices for LED stimulation |
CoolLED 100 Dual Adapt | CoolLED, UK | pE-ADAPTOR-50E | |
LED unit, USL 70/470 | Rapp Optoelectronic | L70-000 | |
Dual port adapter | Rapp Optoelectronic | inquire with company | |
Filter set red (excitation) | AHF, Germany | F49-560 | Filters can be bought as set F46-008 |
(beamsplitter) | AHF, Germany | F48-585 | |
(emission) | AHF, Germany | F47-630 | |
Filter set green (excitation) | AHF, Germany | F39-472 | Alternatives: filterset F36-149 or F46-002 (with bandpass emission) |
(beamsplitter) | AHF, Germany | F43-495W | |
(emission) | AHF, Germany | F76-490 | |
LaserCheck, handheld power meter | Coherent, USA | 1098293 | |
IgorPro Software, Version 6 | Wavemetrics, USA | for electrophysiology data analysis, other alternative software packages can also be used | |
Neuromatic suite of macros for IgorPro | http://www.neuromatic.thinkrandom.com | ||
Post hoc analysis of injections and projections | |||
Paraformaldehyde powder (PFA) | Roth, Germany | 0335.2 | |
Neurotrace 435/455 blue fluorescent Nissl stain | Invitrogen | N-21479 | |
agar-agar for embedding and resectioning | Roth, Germany | 5210.3 | |
30 x 10 mm petri dishes for embedding | SPL Life Sciences | alternatives can be used | |
Slides, Super Frost | R. Langenbrinck, Germany | 61303802 | alternatives can be used |
cover slips | R. Langenbrinck, Germany | 3000302 | alternatives can be used |
Vecta Shield mounting medium | Vector Laboratories, USA | H-1000 | alternative mounting media can be used |
cellulose nitrate filter for flattening slices for fixation | Satorius Stedim Biotech, Germany | 11406–25——N | |
Confocal Laser Scanning Microscope LSM 710 | Zeiss, Germany |