Embryonic stages are the most susceptible to xenobiotics. Although chemical toxicity depends on salinity, no method exists to test the salinity dependence of toxicity to aquatic organisms. Here, we describe a new and high-throughput method for determining the salinity dependence of toxicity to aquatic embryos.
A salinidade constitui uma característica importante do ambiente aquático. Para os organismos aquáticos que define os habitats de água doce, água salobra e água do mar. Os testes de toxicidade dos produtos químicos e avaliações de seus riscos ecológicos para os organismos aquáticos são freqüentemente realizada em água doce, mas a toxicidade dos produtos químicos para os organismos aquáticos depende do pH, temperatura e salinidade. Não existe um método, no entanto, para testar a dependência salinidade de toxicidade para os organismos aquáticos. Aqui, usamos medaka (Oryzias latipes), porque eles podem se adaptar à água doce, água salobra e água do mar. Diferentes concentrações do meio de criação de embriões (ERM) (1x, 5x, 10x, 15x, 20x e 30x) foram empregadas para testar a toxicidade de partículas nanocolloidal prata (SNCs) para Medaka ovos (ERM 1x e 30x ERM têm pressões osmóticas equivalentes à água doce e água do mar, respectivamente). Em placas de seis poços de plástico, de 15 ovos medaka, em triplicado, foram expostas a SNCs a 10 mg / L &# 8722; 1 em diferentes concentrações de MTC a pH 7 e 25 ° C no escuro.
Foi utilizado um microscópio de dissecação e um micrômetro para medir a frequência cardíaca por 15 seg e olho de diâmetro no dia 6 e comprimento do corpo cheio de larvas em incubação dia (secção 4). Os embriões foram observados até a eclosão ou dia 14; Em seguida, contou a taxa de eclosão todos os dias, durante 14 dias (Seção 4). Para ver a acumulação de prata em embriões, que usamos em espectrometria de massa com plasma para medir a concentração de prata de soluções de teste (seção 5) e embriões dechorionated (secção 6) .A toxicidade dos SNCs para embriões medaka, obviamente, aumentou com o aumento da salinidade. Este novo método permite-nos testar a toxicidade dos produtos químicos em diferentes salinidades.
Desde a criação da Organização para a Cooperação e as diretrizes de teste Desenvolvimento Económico (OCDE) para produtos químicos de teste em 1979, 38 guias do teste foram publicados na Seção 2 das orientações, efeitos sobre os sistemas bióticos 1. Todos os organismos aquáticos testados ter sido de habitats de água doce, ou seja, plantas de água doce; algas; invertebrados, como dáfnias e quironomídeos; e peixes, como medaka, peixe-zebra, e truta arco-íris. Em comparação com ambientes de água salgada, ambientes de água doce estão mais directamente afectados pelas actividades económicas e industriais humanos. Portanto, ambientes de água doce foram priorizados para testes, porque eles estão em maior risco de poluição.
Nas zonas costeiras, incluindo estuários, salinidades variam entre as condições de água e água salgada, salobra, e estas áreas são muitas vezes poluída por atividade industrial 2. As zonas costeiras e as suas zonas húmidas associadas são caracterizados por hbiodiversidade ecológica igh e produtividade. ecossistemas costeiros devem, portanto, ser protegido da poluição química. No entanto, tem havido pesquisas ecotoxicológicas em habitats de água e água salgada salobra limitado.
Sakaizumi 3 estudaram as interacções entre tóxicos metil-mercúrio e salinidade em ovos medaka japoneses e descobriram que o aumento da pressão osmótica da solução de teste aumentou a toxicidade do mercúrio metilo. . Sumitani et al 4 utilizaram ovos medaka para investigar a toxicidade do lixiviado de aterro sanitário; eles descobriram que a equivalência osmótica de lixiviados para os ovos era a chave para induzir anormalidades durante a embriogênese. Além disso, Kashiwada 5 relataram que as nanopartículas de plástico (39,4 nm de diâmetro) facilmente permeado através do córion medaka ovo em condições salobras (15x embrião criação médio (ERM)).
Um modelo pequeno peixe típico, os medaka japonês (Oryzias latipes </em>) tem sido utilizado em biologia básica e ecotoxicology 6. Medaka japonês pode viver em condições que variam de água doce para a água do mar por causa de suas células de cloreto altamente desenvolvidos 7. Eles são, portanto, susceptíveis de ser útil para testar em condições com uma vasta gama de salinidade.
Medaka é um peixe de água doce que é altamente tolerante à água do mar; não é bem conhecido que o habitat natural original este peixe era água salgada ao largo da costa japonesa 6. Assim, peixes medaka ter bem desenvolvida células de cloreto 7. Esta propriedade única fornece aos cientistas uma nova maneira de testar a toxicidade dos produtos químicos no ambiente em função da salinidade (água doce para a água do mar), utilizando apenas uma única espécie de peixe.
<p class="jove_…The authors have nothing to disclose.
We are grateful to Ms. Kaori Shimizu and Mr. Masaki Takasu of the Graduate School of Life Sciences, Toyo University, for their technical support. This project was supported by research grants from the Special Research Foundation and Bio-Nano Electronics Research Centre of Toyo University (to SK); by the Science Research Promotion Fund of the Promotion and Mutual Aid Corporation for Private Schools of Japan (to SK); by the New Project Fund for Risk Assessments, from the Ministry of Economy, Trade and Industry (to SK); by a Grant-in-Aid for Challenging Exploratory Research (award 23651028 to SK); by a Grant-in-Aid for Scientific Research (B) and (C) (award 23310026 and 26340030 to SK); and by a Grant-in-Aid for Strategic Research Base Project for Private Universities (award S1411016 to SK) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.
Silver nanocolloids | Utopia Silver Supplements | ||
NaCl | Nacalai Tesque, Inc. | 31319-45 | For making ERM |
KCl | Nacalai Tesque, Inc. | 28513-85 | For making ERM |
CaCl2·2H2O | Nacalai Tesque, Inc. | 06730-15 | For making ERM |
MgSO4·7H2O | Nacalai Tesque, Inc. | 21002-85 | For making ERM |
NaHCO3 | Nacalai Tesque, Inc. | 31212-25 | For making ERM |
AgNO3 | Nacalai Tesque, Inc. | 31018-72 | |
pH meter | HORIBA, Ltd. | F-51S | |
Balance | Mettler-Toledo International Inc. | MS204S | |
medaka (Oryzias latipes) orange-red strain | National Institute for Environmental Studies | ||
medaka flow-through culturing system | Meito Suien Co. | MEITOsystem | |
Artemia salina nauplii eggs | Japan pet design Co. Ltd | 4975677033759 | |
aeration pomp | Japan pet design Co. Ltd | non-noise w300 | |
Otohime larval β-1 | Marubeni Nissin Feed Co. Ltd | Otohime larval β-1 | Artificial dry fish diet |
dissecting microscope | Leica microsystems | M165FC | |
micrometer | Fujikogaku, Ltd. | 10450023 | |
incubator | Nksystem | TG-180-5LB | |
shaker | ELMI Ltd. | Aizkraukles 21-136 | |
6-well plastic plates | Greiner CELLSTAR | M8562-100EA | |
aluminum foil | AS ONE Co. | 6-713-02 | |
stopwatch | DRETEC Co. Ltd. | SW-111YE | |
3-kDa membrane filter | EMD Millipore Corporation | 0.5-mL centrifugal-type filter | |
50-mL Teflon beaker | AS ONE Co. | 33431097 | |
Custom claritas standard | SPEXertificate | ZSTC-538 | For internal standard |
Custom claritas standard | SPEXertificate | ZSTC-622 | For external standard |
ultrapure nitric acid | Kanto Chemical Co. | 28163-5B | |
hydrogen peroxide | Kanto Chemical Co. | 18084-1B | for atomic absorption spectrometry |
ICP-MS | Thermo Scientific | Thermo Scientific X Series 2 | |
hot plate | Tiger Co. | CRC-A300 |