The paper describes a method for producing extreme nanowires by melt infiltration into carbon nanotubes and how 1D systems may be characterized and investigated using Resonance Raman Spectroscopy to determine vibrational and optical excitation energies.
This paper briefly describes how nanowires with diameters corresponding to 1 to 5 atoms can be produced by melting a range of inorganic solids in the presence of carbon nanotubes. These nanowires are extreme in the sense that they are the limit of miniaturization of nanowires and their behavior is not always a simple extrapolation of the behavior of larger nanowires as their diameter decreases. The paper then describes the methods required to obtain Raman spectra from extreme nanowires and the fact that due to the van Hove singularities that 1D systems exhibit in their optical density of states, that determining the correct choice of photon excitation energy is critical. It describes the techniques required to determine the photon energy dependence of the resonances observed in Raman spectroscopy of 1D systems and in particular how to obtain measurements of Raman cross-sections with better than 8% noise and measure the variation in the resonance as a function of sample temperature. The paper describes the importance of ensuring that the Raman scattering is linearly proportional to the intensity of the laser excitation intensity. It also describes how to use the polarization dependence of the Raman scattering to separate Raman scattering of the encapsulated 1D systems from those of other extraneous components in any sample.
ラマン分光法と共鳴ラマン分光法は、広く科学的および技術的に利用される十分に確立された技術です。最初の1928年1ラマン自身が報告しながら、ラマン分光法の普及にするための鍵は、高強度、狭帯域の励起源を提供するために、レーザー、共鳴ラマンの場合の波長可変レーザの開発でした。本論文では、共鳴ラマン散乱は〜1-5原子の直径が例えばナノワイヤー、基本的な物理学を調査し、一般的な、極端なナノワイヤで1D系のサンプルを特徴付けるために特に重要な方法である理由を設定します。また、ラマン、このようなナノワイヤの分光法およびこれらを克服し、それによって、これらのシステムにおけるラマン散乱効率のレーザーエネルギー依存性の高い再現性の測定を達成することを可能にするプロトコルに特定の困難を説明します。
エクステの広い範囲が存在しますまた、研究およびアプリケーションで使用可能なナノワイヤ、として知られているnded、結晶1D量子系、。これらは、蒸気-液体-固体成長した半導体ナノワイヤ2、リソグラフィで定義されたナノワイヤ3、陽極酸化アルミナを含み、エッチング膜のテンプレートナノワイヤ4と他の人を追跡します。これらのシステムへの関心のための主な理由は、彼らが電子と構造に沿って自由に移動するために、他の励起のための能力を持つ大規模な量子閉じ込め効果を組み合わせることです。いくつかの点で、ナノワイヤが原因自由電荷5に電磁スクリーニングを低減例えば 、親物質とは全く異なり、いくつかのケースでは、弾道輸送6に至る電子散乱を減少させました。多くの点でナノワイヤはまだのように一括されているが、 例えば 、地元の結合および結晶構造、ほぼ常に、原子スケールでの電子波動関数の基本的な品質は弱くしかので、バルクと比較して修飾されていますエンベロープの近似7が有効です。しかし、閉じ込められた方向の寸法が数原子に還元されるように、全く新しいボンディングとナノワイヤは、以前に見たことがない同素体8-10を形成する発生する可能性があります。これらのナノワイヤは、2つの意味で極端です。彼らは、断面11-13で可能な削減の極限であり、彼らは極端な性質10,13,14を有しています。
共鳴ラマン分光法を実施する前に、極端なナノワイヤサンプルを生成することが必要です。これらのナノワイヤを生成するために、この論文に記載された方法論は、単層カーボンナノチューブへの材料の溶融浸潤です。浸透溶融する最近( すなわちフラーレン)といくつかのバイナリ塩を連続的に充填された単層カーボンナノチューブ(SWNT)、いくつかの分子の導入のために人気のある他のある昇華を得るために使用される2つの高収量の充填プロトコルの一つでありますCsI の13。また後者の方法は、定量充填近く生産しているが、それを大幅にSWNTに導入してもよいフィリングの数と種類を制約する容易に崇高な材料を導入する必要がありことで制限されます。メルト溶浸充填プロトコルは、注意して、定量的な充填15の近くに生成するために使用される昇華プロトコルよりも少ない制約を有することができます。これらの材料は、ホストのSWNTの損傷を避けるための表面張力よりも低い100-200ミネソタメートル-1と約1300 K以下の溶融温度を有していなければならないということである。16
透過型電子顕微鏡(TEM)は、カーボンナノチューブの充填の質を特徴付ける、生成極端なナノワイヤの結晶構造または構造を同定するための最良の方法です。 HRTEM画像からSWNT-埋め込み結晶断片の構造を解くことは、裁判結晶断片モッズから画像シミュレーションの間に試行錯誤の比較を伴いますELSと実験的に得られた画像のコントラスト。本稿では、それらの分光特性の前置きとして、HRTEM像シミュレーションによるSWNTサンプルの極端なナノワイヤモチーフの微細構造を確認するためのプロトコルについて説明します。
共鳴ラマン分光法17共鳴エネルギーは、ナノワイヤのサンプルの種類と品質を特徴づけるために、決定された後、極端なナノワイヤの基本的な物理学を理解し、の両方に理想的なツールです。基本的に、共鳴ラマンは、両方の光学および振動励起エネルギー17の直接的な決意を可能にします。共振の光子エネルギー依存性の付加的なモデリングでは、電子-フォノン相互作用17を定量化することが可能です。共鳴エネルギーが特定の極限ナノワイヤに対して決定されると、ナノワイヤのラマンスペクトルは、株18を追跡するために使用することができ、構造相が原因と19を変更します温度、静水圧、またはワイヤの曲がり。それはまだ証明されるべき一方で、いくつかの磁気極端なナノワイヤで励起がそれらを精査することを可能にするラマン散乱につながるスピン可能性があります。分光電気化学セルに保持された試料のラマン散乱の拡張は、極端なナノワイヤとホストナノチューブ20との間の電荷移動をプローブするために使用することができます。キャラクタリゼーションツールとしてラマン分光法は、ナノワイヤのタイプと質21の非接触、非破壊決意するための方法を提供します。それは、製造および/または精製および後の試料を特徴付けるためのツールとして使用することができるナノワイヤは、トランジスタ、または少なくとも部分的に透明に必要な光子エネルギーである複合材のようなデバイスに含まれている場合でも。
共鳴ラマン散乱(RRS)のための直接的な代替手段を提供することができます誰技術がありません。しかし、いくつかASPEに重なる他の技術の範囲があります機能のCTSこの方法。極端なナノワイヤUV-VIS-NIR吸収測定値22の光学遷移エネルギーを決定するという点でははるかに簡単な技術を提供しています。しかし、異なる構造の吸収分光法のアンサンブルと試料中の特定の構造に関連したセットに異なる光学的特徴を分離することはできません。共鳴ラマン散乱は、光と振動スペクトルの会合にこれを達成することができます。 UV-VIS-NIR吸収測定のハイライトは、共鳴ラマンのエネルギーを対象とした2つの技術を組み合わせて、かなり全体のプロセスをスピードアップすることができます。フォトルミネッセンス励起分光法(PLE)23は 、単一のサンプル中の異なる光学遷移を関連付ける機能を提供していますありません。しかし、それだけでいくつかの、特に非金属ナノワイヤのために働く、それはRRSよりも実行するためにのみわずかに小さい複雑であり、一般的にはエンバイロから保護単分散サンプルを必要とします完全に成功するためにnment。 PLEとは異なり、共鳴ラマン分光法は、バンドルされ、単分散試料と同様に動作し、したがって、ほとんどの試料調製を必要とします。まだ少しの使用、レイリー散乱分光ながら個々のナノワイヤのナノワイヤの構造24に続くによる透過型電子顕微鏡(TEM)分析は、調査スペクトル範囲内のワイヤの光励起エネルギーのすべてを識別し、特定のナノワイヤ構造を識別することができます。しかし、この技術は、RRSで可能な振動エネルギーの情報を提供していません。実行することは非常に困難であると一般的な特性評価ツールとして適していることになるだろうことはありません。振動エネルギー情報の面では現在唯一の実行可能な代替案は、しかし、これは振動エネルギーの異なるセットを探るため、補完的ではなく、競争力のあることが、原因選択ルールに、可能性があるIR分光法25です。またIR秒でpectroscopyは、UV-VIS-NIR吸収測定のようなアンサンブルサンプルと同じ問題に悩まされます。
既に論じたように、ラマン分光法は、科学内の問題の広い範囲に適用されています。分子システムでは、材料の組成を分析するためのフィンガープリント技術としても振動スペクトルとを決定するためのIR分光法を補完するために使用されます。広く本の光散乱固体中のシリーズは9ボリュームが含まれ、 例えば 、結晶性のシステムで利用されています。 3Dと2Dのシステムの場合には、共鳴励起は、標準的な選択ルールの破壊との相互作用を定量化する能力をもたらすラマンプロセス内の特定の光学遷移の寄与を高めるために全体的な散乱強度などを高めるために以下に使用され特定の電子状態とラマンスペクトルで観察された励起の。さらに最近ではラマン分光法は、中央トンとなっていますカーボンナノチューブ、特に単層カーボンナノチューブの研究O。カーボンナノチューブの研究21は、1Dシステムのために共鳴励起は、それが3Dと3Dシステム用ラマンのほとんどのアプリケーションのためのものであるとして、オプションではありませんが、厳密には必要であるという事実を強調しています。非共鳴ラマン散乱を観察することが弱すぎると励起が特に1Dシステムの特徴である状態の光学濃度の強いファンホーブ特異点と共振するときだけであるので、これは、任意のラマンスペクトルその観察することができます。したがって極端なナノワイヤの場合には、ラマン分光法を使用することは、ラマン分光法は、これらの材料を研究に適用することができる前に、サンプル中のナノワイヤのすべての共鳴を見つけるために、完全な共鳴ラマン測定を必要とします。
研究の膨大な量は、ナノワイヤ上で可能な最小直径のナノワイヤの基本的な制限を行ってきたが、極端なナノワイヤは、ほとんど探求されていません。すでにこれらのナノワイヤの特性もわずかに大きい直径のナノワイヤを有する連続体を形成しないことが示されている; 例えば、それらは、その母材の全く新しい結晶形を示すことができます。可能な母材の多数を考慮し、それぞれの親が可能ナノワイヤの物理学の範囲が膨大である1極端なナノワイヤよりも多くを生産することができます。
それらを製造する方法は十分に確立されていないため、極端なナノワイヤの研究がまだ初期段階にあるということではありません。この論文に記載された溶融浸透法は、信頼性が高く、多くのグループによって使用され、溶融浸潤が任意の特定の充填に最適でない場合は、このような昇華充填などの他のアプローチが利用可能ですされています。ある程度フィールドは、非破壊的に極端なナノワイヤを特徴付けるための比較的簡単で広く適用可能な方法の欠如によってバック保持されています。カーボンナノチューブのフィールドは、任意のガイドである場合には、ラマン分光法は、この問題を解決するための選択の方法であることのチャンスを有します。極端なナノワイヤ上で有用なラマンスペクトルを得るための鍵は、ラマン散乱の他のすべての1Dのシステム共鳴増強と共通のものを認識することであることは、任意の散乱を観察するための必要条件です。特定の試料タイプの完全な共振挙動は、測定をスピードアップするサンプルを特徴付けるにラマンのほとんどのアプリケーションで固定共鳴励起エネルギーを使用して、コストを低減することができる、このプロトコールに記載された方法を用いて決定されますラマンシステムに要求。
本論文で提示された結果に示されるように、極端なナノワイヤ上に高品質の共鳴ラマン結果を得る上で重要な問題です再現性を高精度に数日にわたって波長可変レーザのビームを再調整することができるようにする必要があります。これは、実験の最も重要な詳細に実験システムと注意に特定の変更を必要とします。正しい光学系の焦点合わせ、顕微鏡対物レンズと試料の任意の横方向の動きのために正確に補正する能力にレーザビームの正確な整列。技術は、このフォームにこの論文の基礎を達成するために開発されました。他のものは、バルクと量子井戸系の広い範囲の技術を適用し、このようなM. Cardonaのような先駆含む共鳴ラマン実験の再現性を向上させるための技術及びシステムを開発しました。私たちの技術はまたM.ドレッセ21を含むカーボンナノチューブにおけるラマンの先駆者の仕事上に構築されています。しかし、ここで紹介するプロトコルは、極端なナノワイヤ上の共鳴ラマン実験のために特に適しています。
複数の重要な部分プロトコルのuccessは、図10に示す実験システムの開発であった。図は、プロトコルに詳述ラマン実験に用いた光セットアップの平面図を示しています。レーザー光は、プロトコルごとにクライオスタットに封入されたサンプルに対する50X対物レンズ(ラベルOB)、通って集束されます。このクライオスタットは、再配置及びフォーカシングのために、試料の3次元の動きを可能にするために、XYZステージに取り付けられています。レーザー光はAとB(ポンプ源およびTiである:それぞれサファイア)を介して生成され、レーザの正確な詳細は、提供される材料の文書に記されています。商業レーザラインフィルタ(成分C)を使用する場合、レーザ光は、絞り1,2の中心を通って導かれ、レンズ1及び2(L1およびL2)を用いてコリメートされます。光は、プロトコルに詳述されるように、PM2時偏光とレーザパワー入射面を制御するために、半波長板と偏光子(HWP1とPOL1)を通過します。レーザー光が通過しますチューナブルフィルタ、C、及びミラーM1及びM2を使用を通して、それは対物レンズ(OB)の背面の法線とカメラC1およびC2を中心になるように適切な光路に操縦。 NDフィルタは集束手順(ステップ9.9)を行うことができるようにするために、電力計、PM1に対物レンズからの後方反射ビームを位置決めするために使用されます。サンプルからの後方散乱光を収集し、分光計内にレンズ3(L3)とスリット1を通過します。レンズのスリット幅と位置を調整すると、レーザー波長はレーザーラインの外にある場合は、プロトコル部8で詳述したように、ラマン信号を最大化することが重要であるフィルタの動作範囲、ボリュームブラッグセットアップは、セクション8.2あたりとして使用する必要があります.1-8.2.3。光学セットアップは、 図10に従って、黒い破線に応じて変更され、ミラーM3は、パスから除去されることが重要です。偏光依存の実験を行った場合最後に、それはすることが重要です偏光を制御し、分光計に入る偏光を維持し、これは図10に紫色の点線で強調されている設定に追加するプロトコルおよびコンポーネントのセクション12で説明されている。青色は、 図10に破線である構成要素を示しましたプロトコルの部14によって示されるように、サンプルのライブイメージングを可能にするために追加されました。
すべての実験方法と同様に共鳴ラマン散乱には限界があります。具体的には、利用可能な波長可変レーザ光源と検出器は、赤外線への拡張であるが、さらにスペクトル範囲350-1,000 nm単位で実行する方がはるかに簡単ですし、UVが可能であることを意味します。調整可能なソースとラマン散乱を実施するために必要な実験システムは、合理的な見積りが公開時点での£200-300kであると安くはありません。また、必要なシステムの複雑さは、彼らが光とある程度の知識を必要とすることを意味します分光法は、正常に動作します。しかし、ラマン散乱は、他の技術から得ることが困難である情報の組み合わせを提供します。注目すべきことはまだ他の技術によって達成することができない個々の単層カーボンナノチューブのラマン散乱、したがって振動エネルギーを得ることが可能です。
今ナノワイヤの共鳴は、この決定され始めていることをラマン散乱の可能な拡張の範囲を開きます。我々の意見では拡張子は、電気化学的に電荷密度の広い範囲にわたってナノワイヤ上の測定は、これらの材料を理解するための鍵となることができ、4 K 36までの温度で極端なナノワイヤ20をゲーティングします。最終的にさらに生成することができるサンプルの品質を最適化するのに役立ち得る極端なナノワイヤの構造及び融解遷移を理解するラマン散乱を用いました。
The authors have nothing to disclose.
The authors acknowledge financial support from the Engineering and Physical Sciences Research Council, UK under the Program Grant ‘Supercritical Fluid Electrodeposition’ (EP/J016276/1). J.S. and R.J.K. are indebted to the Warwick Centre for Analytical Science (EPSRC funded Grant EP/F034210/1). Additionally, we are indebted to Drs. Zheng Liu and Kazu Suenaga who provided the top right part of Panel d of Figure 1, which originally appeared in Microsc. Semicond. Mater. 2008, 120, 213-216 (used with permission).
Carbon Nanotubes | Nanointegris | NI96 | |
Carbon Nanotubes | Private | Synthesis described in Eurasian Chem.-Technol. J. 2005, 5, 7-18. | |
Mercury Telluride | VMR | 99.999% metals basis | |
Silica Quartz Tubing | H. Baumbach & Co. | Various diameters and lengths used – typically 1 cm OD, 0.8 cm ID and 8cm long. | |
Tube furnace | Carbolite | MTF-12/38/250 | |
JEOL ARM 200F | JEOL | 200 kV High Resolution TEM Operated at 80 kV and equipped with | |
CEOS hardware spherical aberation (Cs) imaging corrector. Cs corrected | |||
to 0.001 mm. | |||
SC1000 ORIUS camera | Gatan | Size of CCD 4008 x 2672 | |
Digital Micrograph Suite 2.31 | Gatan | 64 bit version | |
XMax X-ray Microanalysis | Oxford Instruments | This detector uses the silicon drift detection (SDD) principle. 1 nm diameter electron probe. | |
Crystalmaker Ver 8.7 | Crystalmaker | Used for assembling crystal fragments for image simulations | |
Nanotube Modeler | JCrystalSoft ©2015-2015 | Used for generating Nanotube models | |
SimulaTEM | Private | Ultramicroscopy, 2010, 110, 95-104. | |
Verdi V8 Pump | Coherent | ||
Mira 900 Ti:Sapphire | Coherent | ||
Volume Bragg Grating | Optigrate | Specfication between 680-720nm | |
Photonetc TLS 850 LLTF | Photonetc | Tunable between 700-1000nm | |
LMPLAN IR50x MircoscopeObjective | Olympus | ||
Cryostat | Oxford Instruments | ||
Triple Raman Spectrometers | Princeton Instruments | triple 600nm using gratings 900, 900, 1800 lines/mm | |
CCD | Princeton Instruments | deep depleted, UV enchanced liquid N2 Cooled Silicon CCD |