Summary

Utilizzando<em> Ex Vivo</em> Upright Droplet Culture di interi organi fetali per studiare i processi evolutivi durante mouse Organogenesi

Published: October 21, 2015
doi:

Summary

The ex vivo upright droplet culture is an alternative to current in vitro and in vivo experimental techniques. This protocol is easy to perform and requires smaller amounts of reagent, while permitting the ability to manipulate and study fetal vascularization, morphogenesis, and organogenesis.

Abstract

Indagare organogenesis in utero è un processo tecnicamente impegnativo in mammiferi placentati a causa dell'inaccessibilità di reagenti di embrioni che si sviluppano all'interno dell'utero. Un metodo di coltura delle gocce di nuova concezione ex vivo verticale fornisce una valida alternativa a studi effettuati in utero. L'ex vivo cultura gocciolina offre la possibilità di esaminare e manipolare interazioni cellulari e vie di segnalazione diverse attraverso l'uso di vari composti di blocco e attivazione; Inoltre, gli effetti di vari reagenti farmacologiche sullo sviluppo di organi specifici possono essere studiati senza effetti collaterali indesiderati di somministrazione di farmaci sistemici in utero. Rispetto ad altri sistemi in vitro, la cultura gocciolina consente non solo la capacità di studiare le interazioni tridimensionale morfogenesi e cellula-cellula, che non può essere riprodotto in linee cellulari di mammifero, ma richiede anche molto meno reagents di altri ex vivo e in vitro. protocolli Questo documento dimostra mouse corretta fetale dissezione organo e verticali tecniche di coltura gocciolina, seguito da tutta immunofluorescenza organo per dimostrare l'efficacia del metodo. La gocciolina metodo di coltura ex vivo permette la formazione di architettura organo paragonabile a quello osservato in vivo e può essere utilizzato per studiare processi altrimenti difficili da studio causa letalità embrionale in modelli in vivo. Come sistema domanda di modello, un inibitore piccola molecola sarà utilizzato per sondare il ruolo della vascolarizzazione nella morfogenesi testicolare. Questo droplet metodo di coltura ex vivo è espandibile fino a altri organi fetali, come polmone e potenzialmente altri, anche se ogni organo deve essere ampiamente studiata per determinare eventuali modifiche organo-specifiche al protocollo. Questo sistema di coltura di organi fornisce la flessibilità nella sperimentazione con organi fetali, e risultati richiederlod utilizzando questa tecnica aiuterà i ricercatori Acquisire conoscenze in sviluppo del feto.

Introduction

La rigenerazione di organi in vivo nell'uomo è molto limitata; di conseguenza, l'ingegneria dei tessuti, lo sviluppo di tessuti e organi da cellule individuali donati da un host, sta diventando una terapia potenziale interessante per la sostituzione degli organi. Tuttavia, per questa strategia terapeutica per avere successo, i fattori e le interazioni cellulari coinvolti nella morfogenesi dell'organo devono essere accuratamente studiati e ben compresi. A causa della incapacità di studiare lo sviluppo di organi specifici con approcci tradizionali, i ricercatori si sono rivolti a embrione intero alternativa o intere culture d'organo. Kalaskar et al. 1 hanno dimostrato che ex vivo cultura tutto l'embriogenesi produce risultati comparabili (nel 58% degli embrioni coltivati) per lo sviluppo nell'utero, suggerendo che ex vivo metodi di coltura sono un'alternativa fattibile per gli studi dell'organogenesi.

Un sistema di coltura organo individualizzato, come questo ex vivo droplet sistema di coltura, consente intera analisi organo indipendente dagli effetti sistemici, pur consentendo manipolazione di un percorso di segnalazione specifica o interazioni cellulari tramite aggiunta di reagenti farmacologici o anticorpi. Tradizionalmente, lo studio di sviluppo degli organi fetali è stata limitata alle tecnologie transgeniche e di topi knockout, in aggiunta ai reagenti farmacologici consegnati materna. Tuttavia, ci sono questioni tecniche che coinvolgono queste tecniche e trattamenti in vivo; la maggior parte delle preoccupazioni ruotano attorno gli effetti di influenzare vari organi contemporaneamente che spesso si traduce in letalità embrionale. Un ulteriore problema degli studi di manipolare sviluppo fetale farmacologicamente è l'effetto materno di farmaci in sviluppo embrionale in utero (ad esempio, il metabolismo materno della droga prima che raggiunga l'embrione) e se tali reagenti possono passare attraverso la barriera placentare.

La tecnica di tutta la cultura organo descrittaqui è stato adattato da un primo protocollo descritto da Maatouk et al. 2, in cui interi gonadi fetali sono incubati in ex vivo culture gocciolina verticali. Un vantaggio significativo di coltura gonadi fetali è che gli inibitori piccole molecole possono facilmente accedere tutto l'organo per semplice diffusione. . DeFalco et al hanno dimostrato che utilizzando questo metodo ex vivo gocciolina cultura in combinazione con inibitori di piccole molecole può essere usato per studiare processi e interazioni che avvengono durante lo sviluppo delle gonadi 3 segnalazione; questi processi sarebbe difficile per esaminare in vivo a causa di problemi tecnici (ad esempio, il passaggio dei farmaci attraverso la placenta o letalità di incidere più organi che utilizzano approcci genetici e farmacologici).

La cultura gocciolina non è solo un miglioramento in alcuni aspetti oltre in utero sperimentazione, ma anche che è un miglioramento rispetto in vitro ed ex visistemi vo pure. L'uso di linee cellulari per studiare morfogenesi è estremamente difficile perché mancano i tipi cellulari diversi, mancano matrice extracellulare (ECM) componenti critici che permettano la formazione di architettura organo, e può esibire effetti in cascate di segnalazione. Anche se l'ingegneria dei tessuti ha introdotto notevoli miglioramenti nella creazione di ponteggi che simulano ECM, la mancanza di conoscenza per quanto riguarda i segnali che sono richieste da ogni tipo di cellula durante l'organogenesi rende difficile costruire un sistema di organi in vitro. Altri sistemi ex vivo sono stati precedentemente stabiliti per studiare organogenesi, o più specificamente morfogenesi, e hanno avuto molto successo per l'imaging dal vivo di organi fetali in agar 4, transwells 5, filtri 6 e altre matrici ponteggio 7,8. Il vantaggio del sistema di coltura goccia è che permette lo studio della morfogenesi, fornendo la capacità di utilizzare meno reattivi, che sono oFten costoso, ma dando anche la tensione superficiale organo, che è importante per la crescita e di segnalazione capacità 9.

Nel topo, del testicolo morfogenesi iniziale si svolge tra embrionale (E) mette in scena E11.5 e E13.5; queste fasi comprendono la finestra temporale ottimale per l'esame i fattori che influenzano la differenziazione sesso-specifici. Tra i processi critici che si verificano durante la formazione del testicolo sono la generazione dell'architettura cavo testicolo e la formazione di una rete vascolare specifico testicolo. Utilizzando questo ex vivo tutto l'organo sistema di coltura gocciolina, si è in grado di alterare vascolarizzazione maschio-specifica e inibire testicolo morfogenesi attraverso l'uso di un inibitore piccola molecola che blocca l'attività dei recettori per il fattore di crescita endoteliale vascolare (VEGF); VEGF-mediata rimodellamento vascolare è fondamentale per lo sviluppo del testicolo 10-12. Questa tecnica può essere applicata con successo ad altri organi e può bersagliare tempo specificofinestre di sviluppo. Whole-mount di imaging organo permette la visualizzazione di strutture vitali così come i cambiamenti strutturali e cellulari conseguenti alla somministrazione di vari inibitori. È importante sottolineare che questo sistema è vantaggioso in quanto il ricercatore può ignorare i potenziali effetti confondenti di somministrazione del farmaco materna o interruzione sistemico durante vivo strategie genetiche in mirate. Quindi, tutto questo organo ex vivo sistema di coltura delle gocce può migliorare significativamente la capacità di comprendere le interazioni e le segnalazioni che si verificano in particolare all'interno di particolari organi durante lo sviluppo fetale.

Protocol

Tutti i topi utilizzati in questi studi erano topi CD-1 ottenuti da Charles River Laboratories. Cultura Precedenti esperimenti sono stati eseguiti su altri ceppi, quali C57BL / 6J (dati non mostrati), ma qualsiasi ceppo può essere utilizzato. Femmine adulte in stato di gravidanza sono stati di circa 2-3 mesi di vita e sono stati sacrificati tramite CO 2 inalazione seguita da dislocazione cervicale e toracotomia bilaterale prima della rimozione embrione. I topi sono stati alloggiati in conformità alle linee …

Representative Results

L'ex vivo cultura gocciolina permette di manipolare interi organi, come la gonade, per studiare le interazioni e le dinamiche cellulari. La Figura 1 mostra in modo graduale come preparare una cultura E11.5 gonadica goccia. I primi passi nel protocollo coltura comprendono la rimozione iniziale del utero-embrione contenente dal mouse madre (Figura 1A e 1B). Dopo la rimozione dell'utero dalla madre, la parete uterina viene tagliato e gli embrioni vengono liberati dal sacco…

Discussion

Questo studio dimostra un intero metodo gocciolina organo ex vivo che ha molte potenziali applicazioni per lo studio dello sviluppo del feto. Questa tecnica può essere utilizzata per più organi, e permette al ricercatore di affrontare questioni biologiche che sono difficili da valutare in vivo utilizzando approcci a causa dell'inaccessibilità di embrioni e potenziale letalità embrionale. Questo metodo di coltura ha ulteriori vantaggi rispetto ad altri approcci in vitro come linee cellu…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors were supported by: a CancerFree KIDS Research Grant, a March of Dimes Basil O’Connor Starter Scholar Award (#5-FY14-32), a Cincinnati Children’s Hospital Medical Center (CCHMC) Trustee Grant Award; a CCHMC Research Innovation and Pilot Funding Award; and CCHMC developmental funds. Authors also acknowledge the Capel laboratory for the initial optimization of this technique.

Materials

Superfrost Plus Microscope Slides Fisherbrand 12-550-15
Cover Glasses: Squares (22 mm x 22 mm, No. 1.5) Fisherbrand 12-541B
Sally Hansen Xtreme Wear Nail Polish, Invisible Sally Hansen N/A
8-Strip 0.2 mL PCR Tubes & Detached Flat Caps GeneMate T3218-1
Pipetman L P1000L, P200L, P20L, P10L, P2L Gilson FA10006M, FA10005M, FA10003M, FA10002M, FA10001M
Dumont #5 Forceps FST 91150-20
Fine Scissors FST 91460-11
Posi-Click 1.7 ml microcentrifuge tubes Denville C2170
Posi-Click 0.6 ml microcentrifuge tubes Denville C2176
10 μl SHARP Precision Barrier Tips Denville P1096FR
20 μl SHARP Precision Barrier Tips Denville P1121
200 μl SHARP Precision Barrier Tips Denville P1122
1000 μl SHARP Precision Barrier Tips Denville P1126
1 ml syringe with 27gauge needles BD PrecisionGlide 309623
10 ml syringe BD 305559
0.2 μM PES syringe filter VWR 28145-501
Grade 3 Qualitative Filter Paper Standard Grade, circle, 185 mm Whatman 1003-185
Primaria 35mm Easy Grip Style Cell Culture Dish Falcon/Corning 353801
Petri Dishes, Sterile (100 mm x 15 mm) VWR 25384-088
New Brunswick Galaxy 14 S CO2 Incubator Eppendorf CO14S-120-0000
Biosafety Cabinet Nuare NU-425-400
Mini-centrifuge  Fisher Scientific 05-090-100
BioExpress GyroMixer Variable XL GeneMate R-3200-1XL
Mastercycler Pro Thermal Cycler with control panel Eppendorf 950040015
SMZ445 stereomicroscope Nikon SMZ445
MultiImage Light Cabinet with AlphaEase Software Alpha Innotech Corporation Discontinued
Absolute 200 proof Ethanol Fisher BP2818-500
Triton X-100 Fisher BP151-100
Sodium Phosphate (Dibasic MW 142) Na2HPO4 Fisher S374-1
Potassium Phosphate (Monobasic MW 136) KH2PO4 Sigma-Aldrich P5379-1KG
Sodium Chloride (NaCl) Fisher S671-3
Potassium Chloride (KCl) Sigma-Aldrich P3911-1KG
Magnesium Chloride (MgCl2) Sigma M2393-100g
Calcium Chloride (CaCl2) Sigma C5670-100g
Ambion Nuclease-Free Water Life Technologies AM9938 
XY PCR Primer  IDT N/A
Glacial Acetic Acid Fisher A38-500
Ethylenediamine Tetraacetic Acid (EDTA) Fisher BP2482-1
1% Ethidium bromide solution Fisher BP1302-10 Toxic
Agarose GeneMate E-3120-500
Sodium Hydroxide (NaOH) Sigma-Aldrich 367176-2.5KG
Trizma Base Sigma T1503-1KG
dNTP Set, 100 mM Solutions Thermo Scientific R0182
DNA Choice Taq polymerase with 10x Buffer Denville CB-4050-3
Paraformaldehyde Fisher O4042-500 Toxic
FluorMount-G Southern Biotech 0100-01
Hydrogen Chloride (HCl) Fisher A144212
Bovine Serum Albumin (BSA), powder, Fraction V, Heat shock isolation Bioexpress 0332-100g
Dulbecco's Modified Eagle Medium (DMEM)  Life Technologies 11965-092
Fetal Bovine Serum (FBS), triple 100-nm filtered Fisher 03-600-511 Heat-inactivate before using
Penicillin-Streptomycin (10,000 U/mL) Life Technologies 15140-122 Use at 1:100
Dimethyl sulfoxide (DMSO), Hybri-max, sterile-filtered Sigma D2650
VEGFR Tyrosine Kinase Inhibitor II – CAS 269390-69-4 – Calbiochem EMD Millipore 676481
Rabbit Anti-Sox9 Antibody Millipore AB5535 Use at dilution: 1:4,000
Rat Anti-Mouse PECAM1 (CD31) Antibody BD Pharmingen 553370 Use at dilution: 1:250
Rabbit Cleaved Caspase-3 (Asp175) Antibody Cell Signaling 9661S Use at dilution: 1:250
Rat E-cadherin / CDH1 Antibody (ECCD-2) Life Technologies 13-1900 Use at dilution: 1:500
Hoechst 3342, trihydrochloride, trihydrate Invitrogen (Molecular Probes) H1399 Use at 2ug/ml
Cy3 AffiniPure Donkey Anti-Rat IgG (H+L) Jackson Immunoresearch 712-165-153 Use at dilution: 1:500
Alexa Fluor 647 AffiniPure Donkey Anti-Rat IgG (H+L) Jackson Immunoresearch 712-605-153 Use at dilution: 1:500
Donkey anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor 555 conjugate Life Technologies A31572 Use at dilution: 1:500
Donkey anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor 488 conjugate Life Technologies A21206 Use at dilution: 1:500
Donkey anti-Rat IgG (H+L) Secondary Antibody, Alexa Fluor 488 conjugate Life Technologies A21208 Use at dilution: 1:500
Donkey anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor 647 conjugate Life Technologies A31573 Use at dilution: 1:500

References

  1. Kalaskar, V. K., Lauderdale, J. D. Mouse embryonic development in a serum-free whole embryo culture system. J. Vis. Exp. (85), e50803 (2014).
  2. Maatouk, D. M., et al. Stabilization of beta-catenin in XY gonads causes male-to-female sex-reversal. Hum. Mol. Genet. 17, 2949-2955 (2008).
  3. DeFalco, T., Bhattacharya, I., Williams, A. V., Sams, D. M., Capel, B. Yolk-sac-derived macrophages regulate fetal testis vascularization and morphogenesis. Proc. Natl. Acad. Sci. U.S.A. 111, E2384-E2393 (2014).
  4. Coveney, D., Cool, J., Oliver, T., Capel, B. Four-dimensional analysis of vascularization during primary development of an organ, the gonad. Proc. Natl. Acad. Sci. U.S.A. 105, 7212-7217 (2008).
  5. Walton, K. D., Kolterud, A. Mouse fetal whole intestine culture system for ex vivo manipulation of signaling pathways and three-dimensional live imaging of villus development. J. Vis. Exp. (91), e51817 (2014).
  6. Delmarcelle, A. S., Villacorte, M., Hick, A. C., Pierreux, C. E. An ex vivo culture system to study thyroid development. J. Vis. Exp. (88), e51641 (2014).
  7. Costantini, F., Watanabe, T., Lu, B., Chi, X., Srinivas, S. Dissection of embryonic mouse kidney, culture in vitro, and imaging of the developing organ. Cold Spring Harb. Protoc. 2011, (2011).
  8. Petzold, K. M., Spagnoli, F. M. A system for ex vivo culturing of embryonic pancreas. J. Vis. Exp. (66), e3979 (2012).
  9. Foty, R. A simple hanging drop cell culture protocol for generation of 3D spheroids. J. Vis. Exp. (51), e2720 (2011).
  10. Combes, A. N., et al. et al.Endothelial cell migration directs testis cord formation. Dev. Biol. 326, 112-120 (2009).
  11. Bott, R. C., McFee, R. M., Clopton, D. T., Toombs, C., Cupp, A. S. Vascular endothelial growth factor and kinase domain region receptor are involved in both seminiferous cord formation and vascular development during testis morphogenesis in the rat. Biol. Reprod. 75, 56-67 (2006).
  12. Cool, J., DeFalco, T. J., Capel, B. Vascular-mesenchymal cross-talk through Vegf and Pdgf drives organ patterning. Proc. Natl. Acad. Sci. U.S.A. 108, 167-172 (2011).
  13. Clapcote, S. J., Roder, J. C. Simplex PCR assay for sex determination in mice. BioTechniques. 38, 702, 704-706 (2005).
  14. Nel-Themaat, L., et al. et al.Morphometric Analysis of Testis Cord Formation in. Dev. Dyn. 238, 1100-1110 (2009).
  15. Kent, J., Wheatley, S. C., Andrews, J. E., Sinclair, A. H., Koopman, P. A male-specific role for SOX9 in vertebrate sex determination. Development. 122, 2813-2822 (1996).
  16. Morais da Silva, S., et al. et al.Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. 14, 62-68 (1996).
  17. Rockich, B. E., et al. Sox9 plays multiple roles in the lung epithelium during branching morphogenesis. Proc. Natl. Acad. Sci. U.S.A. 110, E4456-E4464 (2013).
  18. Si-Tayeb, K., Lemaigre, F. P., Duncan, S. A. Organogenesis and development of the liver. Dev. Cell. 18, 175-189 (2010).
  19. Brennan, J., Capel, B. One tissue, two fates: Molecular genetic events that underlie testis versus ovary development. Nat. Rev. Genet. 5, 509-521 (2004).
  20. Martineau, J., Nordqvist, K., Tilmann, C., Lovell-Badge, R., Capel, B. Male-specific cell migration into the developing gonad. Curr. Biol. 7, 958-968 (1997).
  21. Yokonishi, T., Sato, T., Katagiri, K., Ogawa, T. In vitro spermatogenesis using an organ culture technique. Methods Mol. Biol. 927, 479-488 (2013).
  22. Sato, T., et al. In vitro production of functional sperm in cultured neonatal mouse testes. Nature. 471, 504-507 (2011).
  23. Gohbara, A., et al. In vitro murine spermatogenesis in an organ culture system. Biol. Reprod. 83, 261-267 (2010).

Play Video

Cite This Article
Potter, S. J., DeFalco, T. Using Ex Vivo Upright Droplet Cultures of Whole Fetal Organs to Study Developmental Processes during Mouse Organogenesis. J. Vis. Exp. (104), e53262, doi:10.3791/53262 (2015).

View Video