Summary

דור של תאי גזע האינטגרציה נטול האדם המושרה pluripotent שימוש קרטינוציטים נגזר שיער

Published: August 20, 2015
doi:

Summary

This manuscript provides a step-by-step procedure for the derivation and maintenance of human keratinocytes from plucked hair and subsequent generation of integration-free human induced pluripotent stem cells (hiPSCs) by episomal vectors.

Abstract

Recent advances in reprogramming allow us to turn somatic cells into human induced pluripotent stem cells (hiPSCs). Disease modeling using patient-specific hiPSCs allows the study of the underlying mechanism for pathogenesis, also providing a platform for the development of in vitro drug screening and gene therapy to improve treatment options. The promising potential of hiPSCs for regenerative medicine is also evident from the increasing number of publications (>7000) on iPSCs in recent years. Various cell types from distinct lineages have been successfully used for hiPSC generation, including skin fibroblasts, hematopoietic cells and epidermal keratinocytes. While skin biopsies and blood collection are routinely performed in many labs as a source of somatic cells for the generation of hiPSCs, the collection and subsequent derivation of hair keratinocytes are less commonly used. Hair-derived keratinocytes represent a non-invasive approach to obtain cell samples from patients. Here we outline a simple non-invasive method for the derivation of keratinocytes from plucked hair. We also provide instructions for maintenance of keratinocytes and subsequent reprogramming to generate integration-free hiPSC using episomal vectors.

Introduction

הגילוי של תאי גזע אנושיים pluripotent מושרה (hiPSCs) חולל מהפכה בתחום של רפואת רגנרטיבית, מתן שיטה ריאלי עבור דור של תאי גזע מטופל ספציפי 1-3. hiPSCs כבר נוצר בהצלחה מסוגים שונים סומטי תא, כולל fibroblasts 4,5, תאי hematopoietic 6,7, תאי האפיתל כליות מהשתן 8 וקרטינוציטים 9,10. עד כה, fibroblasts עור ותאי hematopoietic מייצגים מקורות תא הנפוצים ביותר ליצירת iPSCs מטופל ספציפי. ניתן לטעון, וזאת בשל העובדה כי ביופסיות עור ואיסוף דם הם הליכים רפואיים שיגרתי וbiobanks הגדול של דגימות דם או עור מטופל הוקמו במדינות רבות.

בניגוד לתאי דם ופיברובלסטים עור הדורשים שיטות מיצוי פולשנית, קרטינוציטים מייצגים סוג תא נגיש לדור hiPSC. Keratinocytes הם תאי אפיתל קרטין עשיר היוצרים את מחסום האפידרמיס החיצוני של העור ונמצאים גם בציפורניים ושיער 11. בפרט, ניתן למצוא קרטינוציטים על המעטפת החיצונית השורש (ORS) של זקיקי שיער, שכבה חיצונית סלולרית שכיסתה את השערה יחד עם נדן השורש הפנימי (IRS) תאים (12, איור 1). כאוסף שיער הוא הליך פשוט שאינו דורש הסיוע של צוות רפואי, הוא מספק הזדמנות לחולים כדי לאסוף ולשלוח דגימות השיער שלהם למעבדות, אשר תאפשר איסוף דגימות מטופל לדור hiPSC מאוד. קרטינוציטים אפידרמיס יש גם יעילות גבוהה יותר תכנות מחדש וקינטיקה תכנות מחדש מהר יותר בהשוואה לfibroblasts, מוסיף ליתרונות של שימוש בקרטינוציטים כתאים מתחילים לדור hiPSC 9,13. יתר על כן, hiPSCs יכול גם להיות שנוצר באמצעות אוכלוסיות תאים אחרות בתוך זקיק השיער,כולל תאי עורי papilla ממוקמים בבסיס 14,15 זקיק שיער.

דיווחים קודמים של דור iPSC באמצעות תאים שמקורם בשיער לעתים קרובות להשתמש בשיטות תכנות מחדש retroviral או מבוסס lentiviral 9,14,15. עם זאת, שיטות נגיפיות אלה להציג את שילוב רצוי הגנומי של transgenes הזר בתכנות מחדש. לשם השוואה, השימוש בוקטורי episomal מייצג שיטה אפשרית, שאינה נגיפית תכנות מחדש כדי ליצור iPSCs ללא אינטגרציה 4. פיתחנו בעבר שיטה לתכנת מחדש keratinocyte לhiPSCs באמצעות וקטורי episomal 13 ביעילות פשוטה, חסכונית ושאינו נגיפית. כאן אנו מספקים פרוטוקול מפורט לדור של hiPSCs נגזר keratinocyte, כוללים הגזירה של קרטינוציטים מקטפו שיער, הרחבה ותחזוקה של קרטינוציטים ותכנות מחדש לאחר ליצור hiPSCs.

Protocol

האוסף של מדגם שיער אדם מאנשים דורש אישור אתי על ידי ועדת האתיקה מחקר האנושית במוסדות המארח וצריך להיעשות בהתאם להנחיות מוסדיות. 1. בידוד של קרטינוציטים משיער פריטה תאי מטריקס הפשר…

Representative Results

השיער עובר 3 שלבים שונים של מחזור צמיחה: anagen (שלב הצמיחה), Catagen (שלב רגרסיה) וטלוגן (שלב המנוחה) 20,21. זקיק שיער anagen מכיל מספר שכבות של אפיתל; שכבות אלה כוללות ORS, מס הכנסה ושערה (איור 1). שיער Anagen סופו של דבר עובר במעבר לשלב Catagen, שמסומן על ידי אפופטוזיס של ORS וסי?…

Discussion

דור של hiPSCs מטופל ספציפי מציע גישה ייחודית ללימוד פתוגנזה בסוגים החולים תאים במבחנה, וגם מספק פלטפורמה להקרנת סמים לזהות מולקולות רומן שיכול להציל את פנוטיפים המחלה. גישת דוגמנות זה מחלה באמצעות hiPSCs הניבה תוצאות מבטיחות עבור מגוון רחב של מחלות, כולל תסמונת Long QT, ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors wish to thank Harene Ranjithakumaran and Stacey Jackson for technical support. This work was supported in part by grants from the National Health and Medical Research Council (R.C.B. Wong, A. Pébay), the University of Melbourne (R.C.B. Wong), Retina Australia (R.C.B. Wong, S.S.C. Hung, A. Pébay) and the Ophthalmic Research Institute of Australia (R.C.B. Wong, S.S.C. Hung, A. Pébay); Australian Research Council Future Fellowship (A. Pébay, FT140100047), Cranbourne Foundation Fellowship (R.C.B. Wong); intramural funding from the National Institutes for Health (R.C.B. Wong, S.S.C. Hung) and operational infrastructure support from the Victorian Government.

Materials

Antibiotic Mix: 
250 ng/ml Antimycotic amphotericin B Sigma A2942-20ml Antibiotic mix is made up in PBS. 
1X Penicillin/Streptomycin Invitrogen 15140-122
PBS (-) Invitrogen 14190-144
Knockout Serum Replacement (KSR) medium:  KSR medium is filtered using Stericup (Millipore, #SCGPU05RE) before use. bFGF is added fresh to the media before use.
20% knockout serum replacement (KSR) Invitrogen 10828-028
DMEM/F12 with glutamax Invitrogen 10565-042
1× MEM non-essential amino acid Invitrogen 11140-050
 0.5× Penicillin/Streptomycin Invitrogen 15140-122
 0.1 mM β-mercaptoethanol Invitrogen 21985
 bFGF (10 ng/ml, added fresh) Millipore GF003
Keratinocyte medium: 
 EpiLife with 60 µM Calcium Invitrogen M-EPI-500-CA
1× Human keratinocyte growth supplement (HKGS) Invitrogen S-001-5
Fetal Bovine Serum (FBS) medium:  FBS medium is filtered using Stericup (Millipore, #SCGPU05RE)  before use.
10% fetal bovine serum (FBS) Invitrogen 26140079
DMEM  Invitrogen 11995-073
0.5× Penicillin/Streptomycin Invitrogen 15140-122
2 mM L-glutamine Invitrogen 25030
0.25% trypsin-EDTA Invitrogen 25200-056
Extracellular Matrix (ECM):
Matrigel Corning  354234 Aliquot Matrigel stock and store in -80°C following manufacturer’s instructions. Stock concentration of Matrigel varies slightly from batch to batch (~9mg/ml). We recommend to use 200µl matrigel for coating a 12-well plate (~150µg/well). 
Coating Matrix Kit  Invitrogen R-011-K
Plasmids:  Note that pCXLE-eGFP is only used for monitoring transfection efficiency and is not required for reprogramming.
-          pCXLE-eGFP Addgene 27082
-          pCXLE-hOct3/4-shP53F Addgene 27077
-          pCXLE-hSK Addgene 27078
-          pCXLE-hUL Addgene 27080
Transfection reagent Fugene HD Promega E231B
Gelatin (from porcine skin) Sigma G1890 Make up 0.1% gelatin in distilled water. Autoclave before use. 
Reduced Serum medium: OPTI-MEM Invitrogen 31985062
Accutase Sigma A6964-100ml
Mouse embryonic fibroblast (MEF) feeder MEF can be inactivated by mitomycin C treatment or irradiation as described previously 16.
26G needle Terumo NN2613R
6-well plate (tissue culture treated) BD Biosciences 353046
12-well plate (tissue culture treated) BD Biosciences 353043
10 cm dish (tissue culture treated) BD Biosciences 353003
Dispase Invitrogen 17105-041 Use at 10mg/ml
Collagenase IV Invitrogen 17104-019 Use at 1mg/ml
TRA-160 antibody Millipore MAB4360 Use at 5µg/ml
OCT4 antibody Santa Cruz SC-5279 Use at 5µg/ml
NANOG antibody R&D Systems AF1997 Use at 10µg/ml
MycoAlert Detection kit Lonza LT07-418

References

  1. Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126, 663-676 (2006).
  2. Takahashi, K., et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131, 861-872 (2007).
  3. Yu, J., et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 318, 1917-1920 (2007).
  4. Okita, K., et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 8, 409-412 (2011).
  5. Park, I. H., et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 451, U141-U141 (2008).
  6. Okita, K., et al. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 31, 458-466 (2013).
  7. Dowey, S. N., Huang, X., Chou, B. K., Ye, Z., Cheng, L. Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nat Protoc. 7, 2013-2021 (2012).
  8. Zhou, T., et al. Generation of induced pluripotent stem cells from urine. J Am Soc Nephrol. 22, 1221-1228 (2011).
  9. Aasen, T., et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol. 26, 1276-1284 (2008).
  10. Peters, A., Zambidis, E., Ye, K., Jin, S. Chapter 16. Generation of nonviral integration-free induced pluripotent stem cells from plucked human hair follicles. Human Embryonic and Induced Pluripotent Stem Cells: Lineage-Specific Differentiation Protocols.Springer Protocols Handbooks. , 203-227 (2012).
  11. Fuchs, E. Scratching the surface of skin development. Nature. 445, 834-842 (2007).
  12. Limat, A., Noser, F. K. Serial cultivation of single keratinocytes from the outer root sheath of human scalp hair follicles. J Invest Dermatol. 87, 485-488 (1986).
  13. Piao, Y., Hung, S. S., Lim, S. Y., Wong, R. C., Ko, M. S. Efficient generation of integration-free human induced pluripotent stem cells from keratinocytes by simple transfection of episomal vectors. Stem Cells Transl Med. 3, 787-791 (2014).
  14. Higgins, C. A., et al. Reprogramming of human hair follicle dermal papilla cells into induced pluripotent stem cells. J Invest Dermatol. 132, 1725-1727 (2012).
  15. Muchkaeva, I. A., et al. Generation of iPS Cells from Human Hair Follice Dermal Papilla Cells. Acta naturae. 6, 45-53 (2014).
  16. Naaldijk, Y., Friedrich-Stockigt, A., Sethe, S., Stolzing, A. Comparison of different cooling rates for fibroblast and keratinocyte cryopreservation. J Tissue Eng Regen. , (2013).
  17. Sporl, F., et al. Real-time monitoring of membrane cholesterol reveals new insights into epidermal differentiation. J Invest Dermatol. 130, 1268-1278 (2010).
  18. Conner, D. A., et al., Ausubel, F. N., et al. Mouse embryo fibroblast (MEF) feeder cell preparation. Current protocols in molecular biology. 23, Unit 23 22 (2001).
  19. Pebay, A., et al. Essential roles of sphingosine-1-phosphate and platelet-derived growth factor in the maintenance of human embryonic stem cells. Stem Cells. 23, 1541-1548 (2005).
  20. Myung, P., Ito, M. Dissecting the bulge in hair regeneration. J Clin Invest. 122, 448-454 (2012).
  21. Alonso, L., Fuchs, E. The hair cycle. J Cell Sci. 119, 391-393 (2006).
  22. Robinton, D. A., Daley, G. Q. The promise of induced pluripotent stem cells in research and therapy. Nature. 481, 295-305 (2012).
  23. Soares, F. A., Sheldon, M., Rao, M., Mummery, C., Vallier, L. International coordination of large-scale human induced pluripotent stem cell initiatives: Wellcome Trust and ISSCR workshops white paper. Stem cell reports. 3, 931-939 (2014).
  24. McKernan, R., Watt, F. M. What is the point of large-scale collections of human induced pluripotent stem cells. Nat Biotechnol. 31, 875-877 (2013).
  25. Utikal, J., et al. Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature. 460, U1145-U1112 (2009).
  26. Xu, Y., et al. Proliferation rate of somatic cells affects reprogramming efficiency. J Biol Chem. 288, 9767-9778 (2013).
  27. Liu, J., et al. Late passage human fibroblasts induced to pluripotency are capable of directed neuronal differentiation. Cell Transplant. 20, 193-203 (2011).
  28. Huallachain, M., Karczewski, K. J., Weissman, S. M., Urban, A. E., Snyder, M. P. Extensive genetic variation in somatic human tissues. Proc Natl Acad Sci U S A. 109, 18018-18023 (2012).
  29. Abyzov, A., et al. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature. 492, 438-442 (2012).

Play Video

Cite This Article
Hung, S. S., Pébay, A., Wong, R. C. Generation of Integration-free Human Induced Pluripotent Stem Cells Using Hair-derived Keratinocytes. J. Vis. Exp. (102), e53174, doi:10.3791/53174 (2015).

View Video