Cartilage repair represents an unmet medical challenge and cell-based approaches to engineer human articular cartilage are a promising solution. Here, we describe three-dimensional (3D) biomimetic hydrogels as an ideal tool for the expansion and maturation of human articular chondrocytes.
Human articular cartilage is highly susceptible to damage and has limited self-repair and regeneration potential. Cell-based strategies to engineer cartilage tissue offer a promising solution to repair articular cartilage. To select the optimal cell source for tissue repair, it is important to develop an appropriate culture platform to systematically examine the biological and biomechanical differences in the tissue-engineered cartilage by different cell sources. Here we applied a three-dimensional (3D) biomimetic hydrogel culture platform to systematically examine cartilage regeneration potential of juvenile, adult, and osteoarthritic (OA) chondrocytes. The 3D biomimetic hydrogel consisted of synthetic component poly(ethylene glycol) and bioactive component chondroitin sulfate, which provides a physiologically relevant microenvironment for in vitro culture of chondrocytes. In addition, the scaffold may be potentially used for cell delivery for cartilage repair in vivo. Cartilage tissue engineered in the scaffold can be evaluated using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. Utilizing these outcomes, we were able to characterize the differential regenerative potential of chondrocytes of varying age, both at the gene expression level and in the biochemical and biomechanical properties of the engineered cartilage tissue. The 3D culture model could be applied to investigate the molecular and functional differences among chondrocytes and progenitor cells from different stages of normal or aberrant development.
With its limited self-repair potential, human articular cartilage undergoes frequent irreversible damages. Extensive efforts are currently focused on the development of efficient cell-based approaches for treatment of articular cartilage injuries. The success of these cell-based therapies is highly dependent on the selection of an optimal cell source and the maintenance of its regenerative potential. Chondrocytes are a common cell source for cartilage repair, but they are limited in supply and can de-differentiate during in vitro expansion in 2D monolayer culture thereby limiting their generation of hyaline cartilage 1.
The aim of this protocol is to establish a 3-dimensional hydrogel platform for an in vitro comparative study of human chondrocytes from different ages and disease state. Unlike conventional two-dimensional (2D) culture, three-dimensional (3D) hydrogels allow chondrocytes to maintain their morphology and phenotype and provides a physiologically relevant environment enabling chondrocytes to produce cartilage tissue 2,3. In addition to providing a 3D physical structure for chondrocyte culture, hydrogels mimic the function of native cartilage extracellular matrix (ECM). Specifically, the inclusion of chondroitin sulfate methacrylate provides a potential reservoir for secreted paracrine factors 4 and enables cell-mediated degradation and matrix turnover 5. Although many 3D hydrogel culture systems have been utilized widely in various studies including agarose and alginate gels, we have used a biomimetic 3D culture system that has some distinct advantages for chondrocyte culture. Chondroitin sulfate (CS) is an abundant component in articular cartilage and the PEG-CS hydrogels have been shown to maintain and even enhance chondrogenic phenotype and facilitate cell-mediated matrix degradation and turnover 2,5. In addition, the mechanical properties of the hydrogel scaffold can be easily modulated by changing concentration of PEG and hence can be utilized to further enhance the regeneration potential of chondrocytes or a related cell type 6,7. PEG/CSMA is also biocompatible and hence has the potential for a direct clinical application in cartilage defects for example. The limitation for this system is its complexity and the use of photopolymerization that can potentially affect cell viability as compared to simpler systems like agarose, however the advantages for the chondrocyte culture outweigh the potential limitations.
The 3D hydrogel culture is compatible with conventional assay for evaluation of cell phenotype (gene expression, protein immunostaining) and functional outcome (quantification of cartilage matrix production, mechanical testing). This favorable 3D environment was tested to compare the tissue regeneration potential of human chondrocytes from three different aged populations in long-term 3D cultures.
The outcomes were evaluated via both phenotypic and functional assays. Juvenile, adult and OA chondrocytes showed differential responses in the 3D biomimetic hydrogel culture. After 3 and 6 weeks, chondrogenic gene expression was upregulated in juvenile and adult chondrocytes but was downregulated in OA chondrocytes. Deposition of cartilage tissue components including aggrecan, type II collagen, and glycosaminoglycan (GAG) was high for juvenile and adult chondrocytes but not for OA chondrocytes. The compressive moduli of the resulting cartilage constructs also exhibited similar trends. In conclusion, both juvenile and adult chondrocytes exhibited chondrogenic and cartilage matrix disposition up to 6 weeks of 3D culture in hydrogels. In contrast, osteoarthritic chondrocytes revealed a loss of cartilage phenotype and minimal ability to generate robust cartilage.
Conforme relatado no presente protocolo, os hidrogéis 3D são capazes de manter condrócitos fenótipo na cultura, evitando o processo de desdiferenciação celular em células fibrocartilagem normalmente encontrados com culturas em monocamada 15. Além disso, as culturas a longo prazo do construto hidrogel chondrocytes- revelou um ambiente favorável que mantém as características intrínsecas de células associadas com a idade e a doença.
A utilização de um hidrogel biomimética 3D tem várias vantagens. Em primeiro lugar, a inclusão de sulfato de condroitina (CS), um componente principal encontrado na cartilagem articular, permitir que as células de degradar a matriz de hidrogel através da secreção de condroitinase e deitou-se cartilagem recém-sintetizado extra-celular da matriz 5, 16. Além disso, o CS foi mostrado que têm propriedades anti-inflamatórias nas articulações artríticas. O hidrogel biomimética também pode ser utilizado como um material de andaimes para entrega em células de reparação de cartilagem, e podem ser quimicamente modificadospara facilitar uma melhor integração 17,18 tecido-biomaterial.
A utilização de hidrogeles de PEG-CS permite culturas a longo prazo de condrócitos e a avaliação das propriedades bioquímicas e mecânicas. Aqui mostramos como esta plataforma pode ser útil para as análises comparativas de diferentes fontes de condrócitos diferenciados, a fim de definir o tipo celular ideal para a engenharia de cartilagem. Curiosamente, condrócitos encapsulados em hidrogéis permanecer viável e proliferam de acordo com as suas capacidades intrínsecas. Os suportes composição de hidrogel, na verdade, o crescimento de jovens e adultos condrócitos saudáveis, como mostrado na Figura 2. A composição e estrutura dos hidrogeles descritos também promove a formação de tecido de cartilagem, como indicado pela deposição de uma matriz extracelular funcional avaliada por glicosaminoglicano (GAG ) quantificação.
Uma vantagem adicional é que as construções de condrócitos-hidrogelpode ser avaliada para as propriedades mecânicas do tecido de cartilagem recém-formado. Note-se que o ensaio de compressão simples deve ser executada no hidrogel acelular para comparação. Os hidrogeles, de facto, tem uma rigidez intrínseca devido à rigidez das porções CS. Estirpe compressão simples de 5-20% (a uma velocidade de deformação de 1% / s) podem ser aplicados para o teste mecânico de tecido de cartilagem 11,12 desde o esforço fisiológico experimentado por tecido de cartilagem sob condições de carga tem sido relatada como sendo 10-20 % 13,14. A resposta de ambos célula de carga e acelulares hidrogéis ao teste mecânico foi avaliada no ponto final da cultura. No exemplo descrito acima, observou-se uma rigidez comparável das construções contendo adulto e juvenil condrócitos em contraste com a rigidez mais baixa das construções contendo condrócitos OA. Tais propriedades mecânicas da construção de células-hidrogel permitem a avaliação das propriedades funcionais dotecido formado dando uma análise aprofundada da capacidade maturação celular.
Em conclusão, a utilização dos hidrogeles biomiméticos 3D para estudar o potencial de diferente população de condrócitos para gerar tecido de cartilagem pode ser amplamente aplicada. Além dos estudos in vitro descrito aqui, o transplante in vivo das construções de células-carga pode ser concebido para estudar a maturação de células e o potencial regenerador no contexto fisiológico. Outras modificações da plataforma de hidrogel com factores adicionais biomiméticos também pode ser prevista para optimizar a proliferação de condrócitos e maturação.
The authors have nothing to disclose.
The authors would like to acknowledge Stanford Department of Orthopaedic Surgery and Stanford Coulter Translational Seed Grant for funding. J.H.L. would like to thank National Science Foundation Graduate Fellowship and DARE Doctoral Fellowship for support.
juvenile chondrocytes (Clonetics™ Normal Human Chondrocyte Cell System ) | Lonza | CC-2550 | |
adult chondrocytes (Clonetics™ Normal Human Chondrocyte Cell System) | Lonza | CC-2550 | |
poly(ethylene glycol diacrylate) | Laysan Bio | ACRL-PEG-ACRL-1000-1g | |
2-morpholinoethanesulfonic acid | Sigma | M5287 | |
photoinitiator | Irgacure | 2959 | |
sodium chloride | Sigma | S9888 | |
chondroitin sulfate sodium salt | Sigma | C9819 | |
N-hydroxysuccinimide | Sigma | 130672 | |
1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride | Sigma | E1769 | |
2-aminoethyl methacrylate | Sigma | 516155 | |
dialysis tubing | Spectrum Laboratories | 132700 | |
Collagenase 2 | Worthington Biochemical | LS004177 | |
Collagenase 4 | Worthington Biochemical | LS004189 | |
DMEM/F12 media | HyClone, Thermo Scientific | SH3002301 | |
live/dead assay | Life Technologies | L3224 | |
Tri reagent | Life Technologies | AM9738 | |
Quant-iT™ PicoGreen® dsDNA Assay Kit | Invitrogen | P11496 | |
Sodium phosphate dibasic | Sigma | S3264 | |
Ethylenediaminetetraacetic acid disodium salt | Sigma | E5134 | |
L-Cysteine | Sigma | C1276 | |
1,9-dimethylmethylene blue | Sigma | 341088 | |
Instruments | |||
UV light equipment – XX-15LW Bench Lamp, 365nm | UVP | 95-0042-07 | |
Instron 5944 testing system | Instron Corporation | E5940 |