Cartilage repair represents an unmet medical challenge and cell-based approaches to engineer human articular cartilage are a promising solution. Here, we describe three-dimensional (3D) biomimetic hydrogels as an ideal tool for the expansion and maturation of human articular chondrocytes.
Human articular cartilage is highly susceptible to damage and has limited self-repair and regeneration potential. Cell-based strategies to engineer cartilage tissue offer a promising solution to repair articular cartilage. To select the optimal cell source for tissue repair, it is important to develop an appropriate culture platform to systematically examine the biological and biomechanical differences in the tissue-engineered cartilage by different cell sources. Here we applied a three-dimensional (3D) biomimetic hydrogel culture platform to systematically examine cartilage regeneration potential of juvenile, adult, and osteoarthritic (OA) chondrocytes. The 3D biomimetic hydrogel consisted of synthetic component poly(ethylene glycol) and bioactive component chondroitin sulfate, which provides a physiologically relevant microenvironment for in vitro culture of chondrocytes. In addition, the scaffold may be potentially used for cell delivery for cartilage repair in vivo. Cartilage tissue engineered in the scaffold can be evaluated using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. Utilizing these outcomes, we were able to characterize the differential regenerative potential of chondrocytes of varying age, both at the gene expression level and in the biochemical and biomechanical properties of the engineered cartilage tissue. The 3D culture model could be applied to investigate the molecular and functional differences among chondrocytes and progenitor cells from different stages of normal or aberrant development.
With its limited self-repair potential, human articular cartilage undergoes frequent irreversible damages. Extensive efforts are currently focused on the development of efficient cell-based approaches for treatment of articular cartilage injuries. The success of these cell-based therapies is highly dependent on the selection of an optimal cell source and the maintenance of its regenerative potential. Chondrocytes are a common cell source for cartilage repair, but they are limited in supply and can de-differentiate during in vitro expansion in 2D monolayer culture thereby limiting their generation of hyaline cartilage 1.
The aim of this protocol is to establish a 3-dimensional hydrogel platform for an in vitro comparative study of human chondrocytes from different ages and disease state. Unlike conventional two-dimensional (2D) culture, three-dimensional (3D) hydrogels allow chondrocytes to maintain their morphology and phenotype and provides a physiologically relevant environment enabling chondrocytes to produce cartilage tissue 2,3. In addition to providing a 3D physical structure for chondrocyte culture, hydrogels mimic the function of native cartilage extracellular matrix (ECM). Specifically, the inclusion of chondroitin sulfate methacrylate provides a potential reservoir for secreted paracrine factors 4 and enables cell-mediated degradation and matrix turnover 5. Although many 3D hydrogel culture systems have been utilized widely in various studies including agarose and alginate gels, we have used a biomimetic 3D culture system that has some distinct advantages for chondrocyte culture. Chondroitin sulfate (CS) is an abundant component in articular cartilage and the PEG-CS hydrogels have been shown to maintain and even enhance chondrogenic phenotype and facilitate cell-mediated matrix degradation and turnover 2,5. In addition, the mechanical properties of the hydrogel scaffold can be easily modulated by changing concentration of PEG and hence can be utilized to further enhance the regeneration potential of chondrocytes or a related cell type 6,7. PEG/CSMA is also biocompatible and hence has the potential for a direct clinical application in cartilage defects for example. The limitation for this system is its complexity and the use of photopolymerization that can potentially affect cell viability as compared to simpler systems like agarose, however the advantages for the chondrocyte culture outweigh the potential limitations.
The 3D hydrogel culture is compatible with conventional assay for evaluation of cell phenotype (gene expression, protein immunostaining) and functional outcome (quantification of cartilage matrix production, mechanical testing). This favorable 3D environment was tested to compare the tissue regeneration potential of human chondrocytes from three different aged populations in long-term 3D cultures.
The outcomes were evaluated via both phenotypic and functional assays. Juvenile, adult and OA chondrocytes showed differential responses in the 3D biomimetic hydrogel culture. After 3 and 6 weeks, chondrogenic gene expression was upregulated in juvenile and adult chondrocytes but was downregulated in OA chondrocytes. Deposition of cartilage tissue components including aggrecan, type II collagen, and glycosaminoglycan (GAG) was high for juvenile and adult chondrocytes but not for OA chondrocytes. The compressive moduli of the resulting cartilage constructs also exhibited similar trends. In conclusion, both juvenile and adult chondrocytes exhibited chondrogenic and cartilage matrix disposition up to 6 weeks of 3D culture in hydrogels. In contrast, osteoarthritic chondrocytes revealed a loss of cartilage phenotype and minimal ability to generate robust cartilage.
Come riportato in questo protocollo, gli idrogel 3D sono in grado di mantenere condrociti fenotipo nella cultura, evitando il processo di de-differenziazione delle cellule in cellule fibrocartilagine riscontrate in genere con colture monostrato 15. Inoltre, le colture a lungo termine di idrogel costrutto chondrocytes- rivelato un ambiente favorevole che mantiene le caratteristiche intrinseche delle cellule associate con l'età e la malattia.
L'uso di un idrogel biomimetico 3D ha diversi vantaggi. In primo luogo, l'inclusione di condroitin solfato (CS), uno dei principali componenti trovati nella cartilagine articolare, attivare le cellule di degradare la matrice idrogel secernendo condroitinasi e stabilire la cartilagine nuova sintesi extracellulare matrice 5, 16. Inoltre, CS è stato dimostrato per avere proprietà anti-infiammatorie nel giunto artritico. L'idrogel biomimetico può anche essere usato come materiale per la consegna ponteggio cella riparazione della cartilagine, e può essere modificato chimicamenteper facilitare una migliore integrazione dei tessuti 17,18-biomateriale.
L'uso degli idrogel PEG-CS consente colture a lungo termine di condrociti e la valutazione delle proprietà biochimiche e meccaniche. Qui mostriamo come questa piattaforma può essere utile per le analisi comparative delle varie fonti di condrociti differenziati al fine di definire il tipo cellulare ottimale per l'ingegneria cartilagine. È interessante notare che, condrociti incapsulate in idrogel rimangono vitali e proliferano in base alle loro capacità intrinseche. I supporti composizione idrogel, infatti, la crescita di giovani e adulti condrociti sani come mostrato in Figura 2. La composizione e la struttura degli idrogel descritti promuove anche la formazione di tessuto cartilagineo come indicato dalla deposizione di matrice extracellulare funzionale valutata glicosaminoglicani (GAG ) quantificazione.
Un ulteriore vantaggio è che i costrutti chondrocyte-idrogelpuò essere valutata per le proprietà meccaniche del tessuto cartilagineo neoformato. Si noti che il test di compressione non confinato dovrebbe essere eseguita sul idrogel acellulare per il confronto. Gli idrogeli, infatti, hanno una rigidità intrinseca dovuta alla rigidità delle porzioni CS. Ceppo compressione unconfined del 5-20% (a velocità di deformazione 1% / s) può essere applicato per la prove meccaniche della cartilagine tessuto 11,12 in quanto il ceppo fisiologico sperimentato da tessuto cartilagineo sotto condizioni di carico è stato segnalato per essere 10-20 13,14%. La risposta delle cellule sia carichi e acellulari idrogel a prove meccaniche è stata valutata al punto finale cultura. Nell'esempio descritto sopra osservato una rigidità paragonabile dei costrutti contenenti adulti e giovanili condrociti in contrasto con la rigidità inferiore dei costrutti contenenti condrociti OA. Tali proprietà meccaniche del costrutto cellule idrogel permettono la valutazione delle proprietà funzionali deltessuto formata dando una analisi approfondita della capacità maturazione delle cellule.
In conclusione, l'utilizzo degli idrogel biomimetici 3D per studiare il potenziale della popolazione condrociti diverso per generare tessuto cartilagineo può essere ampiamente applicato. Oltre agli studi in vitro qui descritti, trapianto in vivo dei costrutti cellulari carichi può essere prevista per studiare la maturazione delle cellule e potenziale rigenerativo nel contesto fisiologico. Ulteriori modifiche della piattaforma idrogel con ulteriori fattori biomimetici possono anche essere immaginato per ottimizzare la proliferazione di condrociti e maturazione.
The authors have nothing to disclose.
The authors would like to acknowledge Stanford Department of Orthopaedic Surgery and Stanford Coulter Translational Seed Grant for funding. J.H.L. would like to thank National Science Foundation Graduate Fellowship and DARE Doctoral Fellowship for support.
juvenile chondrocytes (Clonetics™ Normal Human Chondrocyte Cell System ) | Lonza | CC-2550 | |
adult chondrocytes (Clonetics™ Normal Human Chondrocyte Cell System) | Lonza | CC-2550 | |
poly(ethylene glycol diacrylate) | Laysan Bio | ACRL-PEG-ACRL-1000-1g | |
2-morpholinoethanesulfonic acid | Sigma | M5287 | |
photoinitiator | Irgacure | 2959 | |
sodium chloride | Sigma | S9888 | |
chondroitin sulfate sodium salt | Sigma | C9819 | |
N-hydroxysuccinimide | Sigma | 130672 | |
1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride | Sigma | E1769 | |
2-aminoethyl methacrylate | Sigma | 516155 | |
dialysis tubing | Spectrum Laboratories | 132700 | |
Collagenase 2 | Worthington Biochemical | LS004177 | |
Collagenase 4 | Worthington Biochemical | LS004189 | |
DMEM/F12 media | HyClone, Thermo Scientific | SH3002301 | |
live/dead assay | Life Technologies | L3224 | |
Tri reagent | Life Technologies | AM9738 | |
Quant-iT™ PicoGreen® dsDNA Assay Kit | Invitrogen | P11496 | |
Sodium phosphate dibasic | Sigma | S3264 | |
Ethylenediaminetetraacetic acid disodium salt | Sigma | E5134 | |
L-Cysteine | Sigma | C1276 | |
1,9-dimethylmethylene blue | Sigma | 341088 | |
Instruments | |||
UV light equipment – XX-15LW Bench Lamp, 365nm | UVP | 95-0042-07 | |
Instron 5944 testing system | Instron Corporation | E5940 |