Summary

鼠标朴素CD4<sup> +</sup> T细胞分离和<em>在体外</em>分化为T细胞亚群

Published: April 16, 2015
doi:

Summary

Naïve CD4+ T cells polarize to various subsets depending on the environment at the time of activation. The differentiation of naïve CD4+ T cells to various effector subsets can be achieved in vitro through the addition of T cell receptor stimuli and specific cytokine signals.

Abstract

Antigen inexperienced (naïve) CD4+ T cells undergo expansion and differentiation to effector subsets at the time of T cell receptor (TCR) recognition of cognate antigen presented on MHC class II. The cytokine signals present in the environment at the time of TCR activation are a major factor in determining the effector fate of a naïve CD4+ T cell. Although the cytokine environment during naïve T cell activation may be complex and involve both redundant and opposing signals in vivo, the addition of various cytokine combinations during naive CD4+ T cell activation in vitro can readily promote the establishment of effector T helper lineages with hallmark cytokine and transcription factor expression. Such differentiation experiments are commonly used as a first step for the evaluation of targets believed to promote or inhibit the development of certain CD4+ T helper subsets. The addition of mediators, such as signaling agonists, antagonists, or other cytokines, during the differentiation process can also be used to study the influence of a particular target on T cell differentiation. Here, we describe a basic protocol for the isolation of naïve T cells from mouse and the subsequent steps necessary for polarizing naïve cells to various T helper effector lineages in vitro.

Introduction

不同的谱系或CD4 + T辅助细胞亚群的概念(TH)细胞已自20 世纪1的后半部被周围。在的共刺激信号的结果存在关联抗原的几轮的细胞增殖和最终分化成效应Th细胞识别。在此过程中产生的Th细胞的类型取决于活化2中存在的细胞因子环境。最初,幼稚Th细胞被认为极化到下面的T细胞受体(TCR)的活化,共刺激CD28结扎,和细胞因子信号2个不同的谱系。 1型辅助细胞(Th1细胞)的特征在于它们的效应产生的IFNγ细胞因子以及它们的分化过程3,4中要求的IL-12信号传导。最终人们发现分化的Th1细胞具有遗传图谱是最鲜明特征BŸ的T盒家族转录因子的表达,TBX21(T-BET),这被认为是Th1细胞的遗传程序5的主调节器。此外,IL-12以及IFNγ可促进T-bet的表达6,7。在免疫应答,Th1细胞在针对细胞内病原体以及自身免疫性炎症的强启动子的宿主防御很重要。与此相反,2型辅助细胞(Th2细胞)要求的IL-4对它们的发展及其效应器细胞因子,包括IL-4,IL-5,和IL-13,是用于驱动B细胞反应的重要和致病在过敏8, 9。类似的Th1细胞,发现Th2细胞表达自己的主转录调节,称为GATA-3 10,11。有趣的是,偏振细胞因子的存在和特定的Th谱系的产生是对立对他人2,12的发展,表明只有一个特定的Th子集可以在免疫重新成为主导sponse。

由于Th1和Th2细胞谱系的鉴定,进一步的工作表明,甚至更独特的子集的辅助性T细胞,包括滤泡辅助(TFH),IL-9产生(TH9),和IL-22产生(TH22)(最近13检讨)。对于在体外分化实验的目的,该协议将只集中于两个附加Th亚群,被称为调节性T细胞(Treg)和IL-17的CD4 + T细胞(Th17细胞)。 CD25 +调节性T细胞可以在胸腺中自然发生(nTreg);幼稚Th细胞也可以被诱导(iTreg)成为规中的周边(在14,15中综述)。这两种类型的调节性T细胞表达的特性的转录因子,称为叉头框P3(Foxp3的)这对于包括可溶性抗炎介体的生产,IL-2的消耗,以及细胞接触依赖性机制14,15其效应抑制机制的关键。 Foxp的缺乏在严重的,多器官的自身免疫紊乱3表达的结果称为免疫失调,多内分泌腺病,肠病,X连锁综合征(IPEX),这表明这钍子集在解决炎症和调节外周耐受自我的关键作用抗原16。在体外,天真的CD4 + T辅助细胞上调Foxp3的和刺激后成为致力于调节性T细胞的程序与IL-2和TGF-β14,15。有可能是适度的,以相当大的可塑性中的CD4 + T细胞谱系,只考虑细胞因子的产生(在17,18综述)时尤其如此。然而,对于在体外分化的协议的目的,我们将要讨论的每个子集作为一个独特的谱系。

最近,Th17细胞产生的IL-17的细胞因子的一个子集被确定为一个独特谱系与促炎性功能是特别致病过程中的自身免疫性炎症19-21。 Th17细胞表达一种独特的转录因子,被称为维甲酸相关孤儿受体γ吨(RORγt)的协调Th17细胞的遗传程序22。 TGFβ是Th17细胞谱系的产生重要通过RORγt的诱导。然而,TGFβ信号传导的效应被认为是只诱导时与IL-6(在12中综述)协同作用的Th17承诺。进一步的研究表明,各种其它信号,可以正调控的Th17承诺,包括IL-1β,增加的钠和TLR信号23-26。其它报告建议,致病Th17细胞在体内是那些实际上绕过TGFβ信号传导,而是依赖于IL-1,IL-6,和IL-23的其分化27的组合。因此,Th17细胞可衍生自各种信号通路;此协议的目的,常用(TGFβ和IL-6)途径Th17细胞谱系的承诺将提交​​。

下面描述的所有效应器谱系分化协议依靠固定抗体上进行刺激的T细胞受体和CD28整个实验的全过程。然而,其他人已经表明,TCR活化与抗原呈递细胞28或交联的抗CD3和与仓鼠抗体抗CD28抗体2天29顷也诱导各种Th亚群的产生的非常有效的手段。这里介绍的协议建立在用于从次级淋巴器官30分离鼠CD4 + T细胞,并产生Th17细胞31以前报道的方法。一个主要的区别是,此协议依赖于使用细胞分选仪的从淋巴组织分离幼稚CD4 + T细胞。然而,许多公司现在提供快速分离试剂盒,可以富集幼稚CD4 + T细胞,其可以是能够绕过要求˚F或排序取决于实验。的方法和在这个协议中提出的试剂是我们经常使用并且发现是最有效的。但是,请记住,替代试剂和方法很多下面介绍的步骤存在,它是由单独的实验室,以确定哪些工作最适合自己的目的。

Protocol

所有的实验程序都采用经环境健康和安全的医学和科学的罗莎琳德·富兰克林大学办公室协议执行。用于该协议C57BL / 6小鼠(来自NCI购买)被安置无特定病原体的条件下,所有的动物实验,使用在医学罗莎琳德富兰克林大学批准的机构动物护理和使用委员会(IACUC)的协议执行,并且科学。 1.准备仪器,耗材和试剂的在无菌PBS,覆盖膜,封口膜中的大衣48孔或24孔板抗CD…

Representative Results

分化可以根据条件的Th变化的分析的时间点被测试,以及T细胞受体激活的强度。后分化2-3天,细胞可以通过光学显微镜进行可视化,以确定的T细胞增殖的程度。井呈现细胞的广泛的增殖和结块很可能将是准备用于分析在4天分化的条件依赖于外源性的IL-2,如Th1和Th2,将后在培养4天后可能用尽介质。为了最大限度地提高细胞因子产生,如井枯竭介质可被补充新的RPMI含有IL-2或计数并重新铺板以每孔1…

Discussion

而脾包含幼稚Th细胞,这部分人群在淋巴结的比例要高得多。未能正确识别和清除淋巴结此协议将导致幼稚细胞的一个贫穷的产量。这可以在具有更多的脂肪组织老年小鼠或雄性小鼠尤其困难。 如图动物四肢和皮肤的1,适当的固定和钉扎将允许访问的外部淋巴结容易可视化。一旦淋巴结和脾脏中进行处理,细胞分选是得到高度纯化的幼稚CD4 + T细胞群体的首选方?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

笔者想在雷诺实验室的医学和科学的罗莎琳德·富兰克林大学的所有成员,并在得克萨斯大学MD安德森癌症中心大学的陈岽实验室感谢这个协议的优化。这项工作得到了一笔赠款,JMR来自美国国立卫生研究院(K22AI104941)的支持。

Materials

Complete RPMI: Warm in a 37 oC water bath before use
RPMI 1640 Media Life Technologies 11875119
10 % FBS Life Technologies 26140-079
1000X 2-mercaptoethanol Life Technologies 21985023
100X Pen/Strep Life Technologies 15140122
100X L-glutamine Life Technologies 25030081
120 micron nylon mesh Amazon CMN-0120-10YD Cut into 2 cm2 squares and autoclave
Alternative: 100 micron cell strainers Fisher 08-771-19 Alternative to cutting nylon mesh
autoMACS running buffer Miltenyi 130-091-221 Warm in a 37 oC water bath before use
autoMACS rinsing solution Miltenyi 130-091-222 Warm in a 37 oC water bath before use
CD4 beads Miltenyi 130-049-201
ACK lysis buffer Life Technologies A10492-01
Cytokines:
Human (h) IL-2 Peprotech 200-02
Recombinant mouse (rm) IL-4 Peprotech 214-14
rmIL-6 R & D Systems 406-ML-025
rmIL-12 Peprotech 210-12
hTGFb R & D Systems 240-B-010
Antibodies:
2C11 (anti-CD3) BioXcell BE0001-1
37.51 (anti-CD28) BioXcell BE0015-1
11B11 (anti-IL-4) BioXcell BE0045
XMG1.2 (anti-IFNg) BioXcell BE0055
anti-CD62L-FITC BioLegend 104406 Use at 1:100
anti-CD25-PE BioLegend 102008 Use at 1:400
anti-CD4-PerCP BioLegend 100434 Use at 1:1000
anti-CD44-APC BioLegend 103012 Use at 1:500
Phorbol  12-myristate 13 acetate (PMA) Sigma-Aldrich P-8139 Prepare a stock at 0.1 mg/ml in DMSO and freeze aliquots at -20 oC
Ionomycin Sigma-Aldrich I-0634 Prepare a stock at 0.5 mg/ml in DMSO and freeze aliquots at -20 oC
Brefeldin A eBioscience 00-4506-51 Use at 1:1000

References

  1. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A., Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 136 (7), 2348-2357 (1986).
  2. Dong, C., Flavell, R. A. Cell fate decision: T-helper 1 and 2 subsets in immune responses. Arthritis Res. 2 (3), 179-188 (2000).
  3. Hsieh, C. S., et al. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science. 260 (5107), 547-549 (1993).
  4. Seder, R. A., Gazzinelli, R., Sher, A., Paul, W. E. Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon gamma production and diminishes interleukin 4 inhibition of such priming. Proc Natl Acad Sci U S A. 90 (21), 10188-10192 (1993).
  5. Szabo, S. J., et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 100 (6), 655-669 (2000).
  6. Afkarian, M., et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4. T cells. Nat Immunol. 3 (6), 549-557 (2002).
  7. Zhu, J., et al. The transcription factor T-bet is induced by multiple pathways and prevents an endogenous Th2 cell program during Th1 cell responses. Immunity. 37 (4), 660-673 (2012).
  8. Le Gros, G., Ben-Sasson, S. Z., Seder, R., Finkelman, F. D., Paul, W. E. Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J Exp Med. 172 (3), 921-929 (1990).
  9. Swain, S. L., Weinberg, A. D., English, M., Huston, G. IL-4 directs the development of Th2-like helper effectors. J Immunol. 145 (11), 3796-3806 (1990).
  10. Zhang, D. H., Cohn, L., Ray, P., Bottomly, K., Ray, A. Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J Biol Chem. 272 (34), 21597-21603 (1997).
  11. Zheng, W., Flavell, R. A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell. 89 (4), 587-596 (1997).
  12. Dong, C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol. 8 (5), 337-348 (2008).
  13. Jiang, S., Dong, C. A complex issue on CD4(+) T-cell subsets. Immunol Rev. 252 (1), 5-11 (2013).
  14. Rudensky, A. Y. Regulatory T cells and Foxp3. Immunol Rev. 241 (1), 260-268 (2011).
  15. Sakaguchi, S., Yamaguchi, T., Nomura, T., Ono, M. Regulatory T cells and immune tolerance. Cell. 133 (5), 775-787 (2008).
  16. Barzaghi, F., Passerini, L., Bacchetta, R. Immune dysregulation, polyendocrinopathy, enteropathy, x-linked syndrome: a paradigm of immunodeficiency with autoimmunity. Front Immunol. 3, 211 (2012).
  17. Shea, J. J., Paul, W. E. Mechanisms underlying lineage commitment and plasticity of helper CD4 T cells. Science. 327 (5969), 1098-1102 (2010).
  18. Zhou, L., Chong, M. M., Littman, D. R. Plasticity of CD4+ T cell lineage differentiation. Immunity. 30 (5), 646-655 (2009).
  19. Harrington, L. E., et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 6 (11), 1123-1132 (2005).
  20. Langrish, C. L., et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 201 (2), 233-240 (2005).
  21. Park, H., et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 6 (11), 1133-1141 (2005).
  22. Ivanov, I. I., et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 126 (6), 1121-1133 (2006).
  23. Chung, Y., et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity. 30 (4), 576-587 (2009).
  24. Reynolds, J. M., Martinez, G. J., Chung, Y., Dong, C. Toll-like receptor 4 signaling in T cells promotes autoimmune inflammation. Proc Natl Acad Sci U S A. 109 (32), 13064-13069 (2012).
  25. Reynolds, J. M., et al. Toll-like receptor 2 signaling in CD4(+) T lymphocytes promotes T helper 17 responses and regulates the pathogenesis of autoimmune disease. Immunity. 32 (5), 692-702 (2010).
  26. Wu, C., et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature. 496 (7446), 513-517 (2013).
  27. Ghoreschi, K., et al. Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature. 467 (7318), 967-971 (2010).
  28. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M., Stockinger, B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 24 (2), 179-189 (2006).
  29. Avni, O., et al. T(H) cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nat Immunol. 3 (7), 643-651 (2002).
  30. Matheu, M. P., Cahalan, M. D. Isolation of CD4+ T cells from mouse lymph nodes using Miltenyi MACS purification. J Vis Exp. (9), (2007).
  31. Bedoya, S. K., Wilson, T. D., Collins, E. L., Lau, K., Larkin, J. Isolation and th17 differentiation of naive CD4 T lymphocytes. J Vis Exp. (79), e50765 (2013).

Play Video

Cite This Article
Flaherty, S., Reynolds, J. M. Mouse Naïve CD4+ T Cell Isolation and In vitro Differentiation into T Cell Subsets. J. Vis. Exp. (98), e52739, doi:10.3791/52739 (2015).

View Video