A method of fabricating, in ambient conditions, organic photovoltaic tandem devices in a parallel configuration is presented. These devices feature an air-processed, semi-transparent, carbon nanotube common cathode.
A method of fabricating organic photovoltaic (OPV) tandems that requires no vacuum processing is presented. These devices are comprised of two solution-processed polymeric cells connected in parallel by a transparent carbon nanotubes (CNT) interlayer. This structure includes improvements in fabrication techniques for tandem OPV devices. First the need for ambient-processed cathodes is considered. The CNT anode in the tandem device is tuned via ionic gating to become a common cathode. Ionic gating employs electric double layer charging to lower the work function of the CNT electrode. Secondly, the difficulty of sequentially stacking tandem layers by solution-processing is addressed. The devices are fabricated via solution and dry-lamination in ambient conditions with parallel processing steps. The method of fabricating the individual polymeric cells, the steps needed to laminate them together with a common CNT cathode, and then provide some representative results are described. These results demonstrate ionic gating of the CNT electrode to create a common cathode and addition of current and efficiency as a result of the lamination procedure.
ポリマー半導体は、高い吸収性、優れた輸送特性、柔軟性、および温度感受性基材との相溶性に主要な有機光起電(OPV)材料である。 OPVデバイスの電力変換効率、η、それらますます実行可能なエネルギー技術作り、9.1%1という高い単一細胞効率で、過去数年間で大幅に跳ね上がっている。
ηの向上にもかかわらず、デバイスの薄最適な活性層の厚さは、光の吸収を制限し、信頼性のある製造を妨げる。さらに、各ポリマーの光吸収のスペクトル幅は、無機材料と比較して制限される。分光感度の異なるペアリングポリマーは、タンデム·アーキテクチャ2必要な技術革新を作り、これらの問題を回避します。
直列タンデムデバイスでは、最も一般的なタンデム·アーキテクチャである。この設計では、電子輸送materiら、任意の金属結合層、及び正孔輸送層は、サブセルと呼ばれる二つの独立した光活性層を接続する。直列構成でサブセルをリンクする結合装置の開回路電圧を増加させる。いくつかのグループは、縮退ドープ輸送層3との成功があった-図5は 、より多くのグループが、層間6,7で正孔と電子の再結合を支援するために、金または銀の粒子を使用した。
対照的に、並列タンデムの2つの活性層を接合する導電性の高い電極、陽極または陰極のいずれかを必要とする。中間層は、金属粒子を含有する連タンデム中間層を制限し、さらにより薄いので、連続的な金属電極の並列タンデム中間ため、これは非常に透明でなければならない。カーボンナノチューブ(CNT)シートは、金属層よりも高い透明性を示す。ナノテク研究所ので、島根大学と共同で、int型を持つモノリシック、パラレルタンデムデバイス8における層間電極として使用することの概念をroduced。
以前の努力は、層間陽極8,9として機能CNTシートを備えたモノリシック、パラレル、タンデムOPVデバイスを特色にした。これらのメソッドは、後に層を堆積する際に、一方または両方の細胞または損傷前の層の短絡を避けるために特別な注意が必要です。この論文で説明されている新しいメソッドは、2つの単電池のポリマー活性層の上にCNT電極を配置することにより、製造を容易にし、 図1に示すように、その後、2つの別々のデバイスを積層する。この方法は、空気を含む、デバイスとして注目に値する-stable CNTカソードを、唯一の乾燥および溶液処理を用いた周囲条件下で完全に作製することができる。
これらは光活性領域からの電子を収集するために、仕事関数を減少させるためにn型ドーピングを必要とするCNTシートは、本質的に良好なカソードはない太陽電池10の。 14 –などのイオン性液体として電解液中に充電電気二重層は、CNT電極の仕事関数11をシフトするために使用することができる。
先行する用紙15に記載され、 図2に示すように、ゲート電圧(V ゲート ) が増加するとき、CNT共通電極の仕事関数は、電極の非対称性を生成する、減少する。これは、OPVのアクセプターから電子を集めるの賛成でOPVのドナーからの正孔のコレクションを防ぎ、およびデバイスは、フォトダイオード15の行動に非効率的なフォトレジスタから変える、ONにしてください。また、エネルギーは、太陽電池15の発電電力に自明と比較されているデバイスと、ゲートリーク電流に起因して失われた電力を充電するために使用されることに留意すべきである。 CNT電極のイオンゲーティング状態の低密度および高による仕事関数に大きな影響を与えるCNT電極における体積に対する表面積の比。類似の方法は、n-Siを16とCNTの界面でショットキー障壁を強化するために使用されている。
パラレルタンデム太陽電池を設計するときの結果は、いくつかの考慮事項を強調表示します。注目すべきことに、サブセルの場合つは、不十分にマイナス影響を受けたタンデム性能を行っている。結果は、2つの主要な効果があることを示している。一つのサブセルが短絡すると、 例えば 、ミック挙動を示し、FF Tが悪いサブセルのFFよりも高くないであろう。 J T SC…
The authors have nothing to disclose.
Support for this work was provided by DOE STTR grant DE-SC0003664 on Parallel Tandem Organic Solar Cells with Carbon Nanotube Sheet Interlayers and Welch Foundation grant AT-1617. The authors thank J. Bykova for providing CNT forests and A. R. Howard, K. Meilczarek, and J. Velten for technical assistance and useful discussions.
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
Poly(3,4-ethylenedioxythiophene):poly-(styrenesulfonate) | Heraeus | Clevios PVP AI 4083 | |
poly(3- hexylthiophene-2,5-diyl) | Rieke Metals Inc. | P3HT: P200 | |
phenyl-C61 -butyric acid methyl ester | 1- Material | PC61BM | |
Poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) | 1- Material | PTB7 | |
phenyl-C61 -butyric acid methyl ester | Solenne | PC71BM | |
1,8-Diiodooctane | Sigma Aldrich | 250295 | |
Chlorobenzene | Sigma Aldrich | 284513 | |
Indium Tin Oxide Coated Glass 15 Ohm/SQ | Lumtec | ||
S1813 | UTD Cleanroom | ||
MF311 | UTD Cleanroom | ||
HCl | UTD Cleanroom | ||
Acetone | Fisher Scientific | A18-20 | |
Toluene | Fisher Scientific | T323-20 | |
Methanol | BDH | BDH1135-19L | |
Isopropanol | Fisher Scientific | A416-20 | |
CEE Spincoater | Brewer Scientific | http://www.utdallas.edu/research/cleanroom/tools/CEESpinCoater.htm | |
Contact Printer | Quintel | Q4000-6 | http://www.utdallas.edu/research/cleanroom/QuintelPrinter.htm |
CPK Spin Processor | http://www.utdallas.edu/research/cleanroom/tools/CPKsolvent.htm | ||
Spin Coater | Laurell | WS-400-6NPP/LITE | |
Glove Box | M-Braun | Lab Master 130 | |
Solar Simulator | Thermo Oriel/Newport | ||
Keithley 2400 SMU | Keithley/Techtronix | 2400 | |
Keithley 7002 Multiplexer | Keithley/Techtronix | 7002 | |
Ultrasonic Cleaner | Kendal | HB-S-49HDT | |
Micropipette | Eppendorf | 200uL |