さまざまな手順が複合酸化物薄膜のエピタキシャル成長にアトミックに定義されたテンプレートを調製するために概説されている。単結晶のSrTiO 3(001)と、DyScO 3の化学処理は、(110)基板は、原子的に平滑な、単一の終端表面を得るために行った。のCa 2 Nbの3 O 10 –ナノシートは、任意の基板上でアトミックに定義されたテンプレートを作成するために使用された。
アトミックに定義された基板表面は、複合酸化物薄膜のエピタキシャル成長のための必要条件である。このプロトコルでは、そのような表面を得るための2つのアプローチが記載されている。最初のアプローチは、単一終端ペロブスカイトのSrTiO 3(001)およびDyScO 3(110)基板の製造である。アニール工程は、表面の平滑性を高めるために使用しながら、ウェットエッチングを、選択的に二つの可能な表面終端の一つを除去した。得られた単終端表面は、高い結晶品質と基板とフィルムの間に明確に定義されたインターフェースを持つペロブスカイト型酸化物薄膜のヘテロエピタキシャル成長を可能に。第二のアプローチでは、任意の基板上のエピタキシャル膜成長用のシード層は、ラングミュア – ブロジェット(LB)ナノシートを堆積することによって作成された。モデル系のCa 2 Nbなど3 O 10 –ナノシートは、その積層された親化合物の層間剥離によって調製し、使用されたHCaの2のNb 3 O 10。ナノシートをシード層を作成する主な利点は、比較的高価でサイズが制限された単結晶基板は、実質的に任意の基板材料で置き換えることができることである。
研究の多くは、エピタキシャル薄膜および材料の組成や構造を調整することにより得ることができるため、機能特性の広範囲の複合酸化物ヘテロ構造の上で行われる。により、いくつかの成長技術の開発に、今日では、組成物とバルクで到達できない結晶品質を有するフィルムを広い範囲とすることができる。1一緒にこれらの材料の特性が高度に異方性であるという事実に加えて、これは、ことになりエピタキシャル膜中の現象および機能を大量に得られないことが観察される。また、エピタキシャル歪みおよびヘテロ構造の作成 は、新規または強化された特性を得るために用いることができる。2
所望の特性を有するエピタキシャル膜とヘテロ構造を成長させるために、明確に定義された表面を有する基板が必要である。表面の化学的性質または形態におけるローカル違いが不均一なn個の原因膜中の望ましくない欠陥や結晶粒界を生じさせるucleation、成長、。さらに、フィルムと基板との間の界面が原因膜の制限された厚さの特性を決定する上で重要な役割を果たしている。これは基板が原子レベルでの滑らかで均質であることが必要であることを意味します。
この基準は、当然、例えば、他の複合酸化物、明確に定義された表面を持たない基板が使用されるときに到達することが困難である。このような観点から、ペロブスカイト型酸化物は、最も研究された基板材料の一つである。ペロブスカイト型酸化物は、A及びBは、金属イオンを表すもので、一般式ABO 3で表すことができる。ほとんどすべての金属が異なる広範囲の基質を作製することを可能にするAまたはBサイトに組み込むことができる。基板材料の汎用性は、印加されたエピタキシャル歪みANをチューニングするチューニングその上に成長した膜の特性のいずれかを可能にする界面での構造はd。しかし、これらの基板上での成長が原因(001)配向基板では特に表示されているペロブスカイト表面の曖昧な性質のために簡単ではありません。 (001)方向では、ペロブスカイトは、AO及びBO 2の交互の層と見なすことができる。 (001)配向基板は、より大きな結晶から切断することによって行われたとき、両方の酸化物が表面に存在する。結晶が完全に(001)面に沿って切断されることはないので、この現象は。 図1に示され、ユニットセルの高さの差のテラスからなる表面を形成する。しかし、半分の単位セルの高さの差は、表面終端の両方のタイプの存在を示すもの、ならびに存在する。ペロブスカイト型酸化物薄膜の成長のために特に示されているように、それは、均質な特性を有する連続的な膜を成長させるために、単一の終端ペロブスカイト基板を有することが重要である。終端成長kの大きな差を生じさせることができ非連続的な膜の成長につながるinetics、3 – 。AO-B'OインターフェイスはBO-A'Oインターフェースとは全く異なる特性を持つことができるので、5さらに、積層順は、完全なフィルム基板界面間で類似していなければならない。 6
シングル終端ペロブスカイト型酸化物表面を得るために、最初に成功した方法はたSrTiO 3(001)配向基板のために開発されました。カワサキら 7は、後述コスターらによって改善されたウェットエッチング法を導入して、図8の方法は、バッファードフッ酸で短いエッチングし、続いて水で、この酸化物を水酸化することにより酸性エッチング向かっのSrOの感度を高めるから成り(BHF)。結晶性を向上させる次のアニールは原子的に平滑な表面のみにTiO 2が存在した与える。その後、単一の終了希土類scandatesを得る方法は、によって開発されました塩基性溶液中でscandatesと比較して、希土類酸化物の高い溶解性を使用して。 3基板は、この中に記述されているこの方法は、特に、斜方晶(110)配向DyScO 3について記載し、それは完全にスカンデート終端表面を得ることが可能であることが示された。9,10方法は、これらの単一の終端のSrTiO 3を得て、DyScOプロトコル。
単結晶ペロブスカイト基板の値は明らかであるが、代替的に、適切な結晶構造をなし、任意の基材も同様に、エピタキシャル膜成長のために使用することができる。それ自体で、エピタキシャル膜の成長に適していない基板は、ナノシートの層で覆うことにより、適切なテンプレートとすることができる。ナノシートは、数ナノメートルの厚さ、およびマイクロメートル領域11の横サイズは、本質的に二次元の単結晶であるため、目のエピタキシャル成長を導く能力を有する映画の中で。任意の基材上にナノシートの層を堆積させることによって、シード層は、格子定数が一致する任意のフィルム材料の配向成長のために作成される。このアプローチは、例えばZnOやTiO 2を 、SrTiO 3を 、LaNiO 3の、鉛ジルコニウム(Zr、Ti)のO 3及びSrRuO 3からの配向成長のための成功が報告されている12 – 15ナノシートを用いることにより、比較的高い価格とサイズの制限正規の単結晶基板を回避することができ、ナノシートは、実質的に任意の基板材料上に堆積させることができる。
ナノシートは、一般的に、親化合物の結晶構造によって決定されるそれらの特定の厚さで、その個別の層に積層された親化合物の層間剥離することにより得られる。11剥離がかさばる、親化合物中の層間の金属イオンを交換することにより、水性環境中で達成することができる構造の原因となる有機イオン、膨張し、最終的に単層ナノシートに剥離している。これは、カウンター帯電有機イオンによって囲まれている荷電ナノシートのコロイド分散液が得られる。剥離プロセスの概略図を図2に示した本プロトコルでは、Caの2のNb 3 O 10 –ナノシートは、モデル系として使用し、これらは、ペロブスカイト親化合物HCaの2のNb 3 O 10から得ることができる。カルシウム2のNb 3 O 10 –ナノシートのSrTiO 3とほぼ同等の面内格子パラメータを有し、原子的に平滑な、単一の終端表面を表示する。したがって、高品質のフィルムは、個々のナノシート上に成長させることができる。ナノシートの水性分散液が得られると、それらは、ラングミュア – ブロジェット(LB)堆積することにより、任意の基板上に堆積させることができる。この方法は、制御性単層においてナノシートの沈着を可能にするGenerally電気泳動堆積または凝集のような他の従来の技術では実現できない。11ナノシートを囲む有機イオンは、表面活性分子であり、フローティングナノシート単層を生成する、分散体の表面に拡散する傾向がある。この単層は密な詰め込みに圧縮し、任意の基板上に堆積させることができる。堆積プロセスの概略図を図3に示されている。 95%の表面被覆率は、一般的に達成可能な15 – 18、これはナノシートまたは重複するエッジを積層せずに主に発生する。多層は繰り返し堆積することによって得ることができる。
本プロトコルのCa 2 Nbの3 O 10で–ナノシートは、モデル系として使用したが、エピタキシャル膜の成長のためのシード層としてナノシートを使用する原理は、より広く適用可能である。酸化物ナノシートは、よりを受けたが文献中のシード層として注目、概念は同様にそのようなBN、GaAsからのTiS 2、ZnSとのMgB 2のような非酸化物ナノシートに拡張することができる。ナノシートは、親化合物の組成を継承するので、また、種々の機能は、親構造の適切な設計によって挿入することができる。配向膜の成長のためのシード層としてのそれらの使用に加えて、ナノシートの多種多様な基本的な材料特性を研究し、新しい機能的な構造を設計する貴重なツールであることが判明している11,19 – 22
このプロトコルは、エピタキシャル成長酸化物薄膜のためのテンプレートの異なる種類を取得するための実験手順を示す。明確に定義された単一の終端のSrTiO 3、DyScO 3基板が記載されている、ならびにカルシウム2のNb 3 O 10を製造する手順を取得するための完全な手順– arbitrarにナノシート層基板のY。
すべてのペロブスカイト型酸化物基板処理の最も重要な側面は、ワークの清浄度である。アニール中の望ましくない反応を簡単に表面を損傷することができますしながら、表面汚染が、基板の領域のエッチングを防止。
異なるステップの順序も重要である。ポストアニールは、基板の表面に大量の不要なDyの拡散につながるので、DyScO 3の処理においては、アニール工程は、エッチング工程の前に行われるべきである。 12 M NaOH溶液でエッチングした後、1 M溶液が常に基板表面にジスプロシウム、水酸化複合体の沈殿を防止するために使用されるべきである。水に浸漬すると、SrOとをhydroxylizeためにSrTiO 3を治療するために必要である。このように、短いエッチング時間が制御されていないエッチングによる表面の損傷防止を使用することができる。水に浸漬しDyScO例ではオプションのステップです。 <sub> 3処理。このステップは単に、標準化されたSrTiO 3治療手順からコピーされ、処理中の任意の意味を持たないと予想される。
アニーリング工程は、表面の結晶性を向上させるために必要である。 DyScO 3とSrTiO 3を治療のために示さアニール時間は、平均して、明確に定義されたステップの棚につながる、時間です。しかし、時々 、アニール時間は広いテラスで、すなわち 、低いミスカット角を有する基板に対して大きくする必要がある。増加した拡散長は、最適なサイトを見つけるために、表面原子のために必要とされる。たSrTiO 3の場合には、あまりにも長いアニール時間は、表面にバルクからのSr原子の望ましくない拡散を引き起こすことがある。代表的な結果の項で説明したように、この第2の終端は、ストレートステップエッジと角穴の出現により表面モフォロジに観察することができる。その場合、表面処理cは繰り返されるが、最終的なアニーリングステップが30分26 920℃で実施されるべきである。
このプロトコールに記載される方法は、(001)SrTiO 3を希土類scandatesための最も成功した方法であるが、これらのみの基板にも適用可能である。しかし、他の基材のための方法は、正確な表面の化学的性質に調整されるべきである。他の方位を有する基板を使用する場合これは、必要とされる、またはその代わりにBサイト終了のサイトが所望される場合。既存の治療の概要は、サンチェスら 6とSchlom らに記載されています。2
ナノシートのシード層に関しては、プロセスの繊細な部分は、高品質のナノシート分散液を得るために、成膜時の汚染を防止するためである。かさばる有機イオンを添加することにより、単層ナノシートへの層状親化合物の剥離が容易に発生しますが、ナノシートが凝集してしまう傾向がある分散及びそのような凝集体中に均質な単層の堆積の妨げになる。したがって、分散体の下部を使用する、使用前に少なくとも24時間、静止状態で新たに希釈した分散体を残していないことが非常に重要である。これは、大きな凝集体が沈降すると、分散液の上部は、比較的純粋となるまでの時間を残す。進行中の凝集が連続して分散が低下しますので、希釈後1週間以内に使用を推奨します。分散ボリューム全体ナノシート濃度で発生した勾配が分散原液から撮影ボリューム内のローカルナノシート濃度に応じて、LB法の中に表面圧力値のいくつかのバリエーションを引き起こすことに注意してください。また、LB法は、界面活性分子に基づいているため、汚染や移動に非常に敏感である。慎重なセットアップとウィルヘルミープレートのクリーニング(好ましくはクリーニングツールでのみ、このセットアップに専念し)と保護AGainstを流れる空気振動が非常に重要である。
LB法により任意の基材上にナノシートのシード層を形成するという概念は、薄膜成長の分野で有用なツールである。ナノシートの原子的完全表面は、原則的に、一致する格子定数を持つ膜材料を高品質のエピタキシャル膜が得られる。ナノシートは、実質的に任意の基板材料上に堆積させることができるので、他の材料は、比較的高価であり、サイズが制限された単結晶基板を交換することができる。 LB法は、一般に電気泳動堆積または凝集のような他の従来の技術では実現できない高い制御性単層におけるナノシートの堆積を可能にする。11が、ボトルネックは、シード層の完成度である。大面積にわたって高い膜品質が、これは達成されていない、機能デバイスで現在までに信頼性の高いアプリケーションのために必要とされる。でナノシートを堆積させるために完全な範囲、好ましくは、それらの面内配向性を制御するためには、フィールドの主な課題である。それにもかかわらず、現在の技術水準では、すでに研究の貴重なツールであることが証明された。
The authors have nothing to disclose.
この作業は、財政的にVIDIの助成金を通って、TOPとECHOプログラムの枠組みの中で科学研究費オランダ機構(NWO-CW)の化学科学部門で科学研究費オランダ機構(NWO)でサポートされています。
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
tetra-n-butyl ammonium hydroxide (40 wt% aq) | Alfa Aesar | L02809 | corrosive |
Langmuir Blodgett setup (incl trough, barriers, Wilhelmy plate, frame etc) | KSV NIMA | see catalogue behind link for multiple options | http://www.ksvnima.com/file/brochures-2/ksvnimallbaccessoryandmodules 23-8-2013.pdf |
Buffered hydrogen fluoride (NH4F:HF = 87.5:12.5) | Sigma Aldrich | 40207 | Hazard statements: H301-H310-H314-H330, precautionary statements: P260-P280-P284-P301 + P310-P302 + P350-P305 + P351 + P338 |
NaOH (reagent grade) | Sigma Aldrich | S5881 | Hazard statements: H290-H314, precautionary statements: P280-P305 + P351 + P338-P310 , product purchased as pellets, the 12 and 1 M solutions should be made from these pellets. |
Tube furnace (Barnstead 21100) | Sigma Aldrich | Z229725 | |
STO and DSO substrates | CrysTec GmbH, Germany | – | www.crystec.de, size used 5 x 5 x 0.5 mm3 |