ここでは、フローラルディップを経由してアグロバクテリウムによる植物の形質転換を用いて、亜麻を変換するプロトコルを提示する。このプロトコルは、実施が簡単で安価である、まだ亜麻の形質転換のために現在利用できる方法よりも高い変換率が得られます。
フローラルディップを介してアグロバクテリウム媒介植物形質転換は、植物形質転換の分野で広く使用される技術であり、多くの植物種のために成功することが報告されている。しかし、フローラル·ディップによる亜麻( アマ )変換が報告されていない。このプロトコルの目的は、 アグロバクテリウムとフローラルディップ法、トランスジェニック亜麻を生成するために使用できることを確立することである。我々は、この技術は、簡単で安価な、効率的であり、より重要なことに、亜麻変換の現在利用可能な方法よりも高い変換率が得られることを示している。
2分-要するに、亜麻の花序1バイナリベクタープラスミド(T-DNA断片プラスアマ挿入シーケンス、LIS-1)を担持するアグロバクテリウムの溶液に浸漬した。植物は24時間彼らの側に平らに置いた。次いで、植物は、次の処理までの通常の増殖条件下で維持した。プロセスへ浸漬の間に14日間隔 – 約10で3回、 – 浸漬のsは2を繰り返した。 T1種子を収集し、土壌上で発芽させた。約2週間後、処理された子孫を直接PCRによって試験した。 2から3葉植物プラス適切なT-DNAプライマーごとに使用した。陽性の形質転換体を選択し、成熟するまで成長させた。陽性形質転換体である、処理された植物からの種子の60% – 変換率が50では、予想外に高かった。これは、フローラルディップ変換を用いて、シロイヌナズナ及び他の植物種について報告されたものよりも高い変換率である。また、形質転換のための他の方法を使用して亜麻形質転換のために、これまでに報告されている、最も高い。
亜麻( アマ ) は、その繊維と油のため広く栽培重要な作物である。亜麻ゲノムの形質転換は、再生が続くバイオリスティック粒子または超音波処理を適用し、組織培養におけるそのような創傷、 アグロバクテリウム感染 、及び共培養のような技術により可能である。しかしながら、これらの技術は、多くの変異事象の傾向およびトランスジェニック系統を得るために長時間を含む多くの欠点を持っている。これらの方法のいくつかは、高価であり、低回収苗、その結果、器具の熟練した効率的な操作を必要とすることができる。最も重要なことは、これらの技術は、多くの場合、低い変換率2,6が生じる。
フローラルディップ経由アグロバクテリウムによる植物の形質転換は、トランスジェニック植物を生成するための簡単かつ効率的なアプローチである。それは、日常的にし、正常にそのようなシロイヌナズナthalianなど多くの植物種のために使用されてきた1,4、 ウマゴヤシのtruncatula 11、トマト12、小麦13とトウモロコシ10。しかし、それは、原因亜麻によって生成花少数など、いくつかの要因に亜麻の形質転換のための実行可能な技術は、それぞれの花から得られた種子の数が限られ、大きな種子サイズ、及び厚さの被膜として考えられていないまた、形質転換プロセスのために問題となる可能性がある。さらに、フローラルディップ技術の選択セグメントは、非形質転換子孫が発芽や発芽していないどちらながら変換し子孫は、発芽と緑に滞在する能力に基づいて区別して、抗生物質を含む植物メディアに変換された種子を発芽さが必要ですが、漂白剤出素早く死ぬ。現在の文献では、野生型亜麻ベースの偽陽性の結果を生成する、およびT1子孫の選択を行う、抗生物質選択の高濃度を脱出する傾向があることが指摘されている抗生物質耐性に6,14より難しい。また、抗生物質の高濃度は、選択培地に添加した場合、観測された変換率は劇的9ドロップ。
このプロトコルでは、そのゲノム3,5を変更することによって、環境におけるストレスに応答することが示されている繊維、亜麻、モント巻雲(応答性プラスチック)の行を変換するためにアグロバクテリウムとフローラルディップ法を用いた。抗生物質エスケープ問題を克服するために、我々は、植物培地に抗生物質を添加することによって、代わりの選択T1葉からのDNAの直接PCR検査を行うことを選択した。我々は、処理時に特定の花を追跡するために亜麻の簡単な解剖学的構造を利用した。この追跡システムは、抗生物質を添加することなく、土壌の特定の花および発芽の種子の選択を可能にした。陽性の形質転換体を、単に、迅速かつ効率的な方法を使用してoを葉から得られたDNAを試験することによって同定されたFダイレクトPCR。我々の結果は、フローラルディップ法は、亜麻のこの行に非常によく働いて、驚くべきことに、非常に高い変換率をもたらしたことを実証する-以前であると報告されたシロイヌナズナのために観察されるものよりも高い(50~60%)0.1から1 1%、および他の植物種10,12よりも高い。我々はまた、亜麻仁の別のさまざまな(オイル亜麻)、ベスーン(安定した非応答)をテストし、私たちの予備データはフローラル·ディップも、亜麻のこの品種のために働くことを示しています。
このプロトコルの目的は、 アグロバクテリウムとフローラルディップジェニック亜麻を生成するために使用できることを示すことである。我々は、この技術は、簡単で安価、および亜麻変換の他の方法よりも迅速であることを示している。さらに重要なことには、亜麻変換2,6の他の方法よりもはるかに高い変換率をもたらす。多くの枝や花を持つシロイヌナズナの解剖学、マサチューセッツ州KESが困難同じ植物に浸し、非浸し花を区別する。したがって、種子の多数は、植物当たり約2万種子は、陽性形質転換体8を同定するためにスクリーニングされる必要がある。亜麻は、一方では、個々の花を追跡すると、スクリーニングプロセスの間に、特定の種を選択することを可能にするもの、植物当たり約100個の種子を生産する、より少ない分岐(一方の主枝及び少数側枝)少ない花を有する。
私たちは、フローラル·ディップが亜麻のいずれかの近縁種、約200種の属を変換するために適用可能な方法であることを提案する。この方法は、亜麻変換の他の方法よりもはるかに高い変換率が得られる。また、T1葉DNAの直接PCRスクリーニングは、しばしば、多くの偽陽性を生じる抗生物質耐性のエスケープの問題を克服する効率的な方法であることを提案している。直接PCRスクリーニングは、任意の他の植物種に適用することができ、tは限定されるものではない亜麻O。このプロトコールで用いられる単純なシード追跡技術は、亜麻と類似の解剖学的構造を分岐して他の植物種に適用することができる。
そのような亜麻( アマ )のようないくつかの植物種では、成功した植物形質転換は制限されてきた。以前は、亜麻で変換が負傷し、共培養、バイオリスティック粒子を適用するか、再生に続いて、超音波超音波処理を使用してアグロバクテリウム感染を必要としている。多くの変異事象を伴うことに長くがちでもあるプロセス。また、これらの技術の選択方法は、カナマイシンのような抗生物質選択マーカーの使用を必要とする。しかし、亜麻抗生物質6,9,14高濃度の脱出する傾向があるため、選択するこの方法は、多くの偽陽性を生じることが文献に記載されている。亜麻変換における従来の技術の別の欠点は、低い変換率は2,6であった。
ここに記載されているプロトコルでは、フローラル·ディッピング経由アグロバクテリウムによる植物の形質転換が示された(百分の50から60まで)亜麻のための高変換率をもたらすと。形質転換体は、メインとサイド枝から浸漬し、収集した花から入手した。陽性形質転換体の選択は単純に通過抗生物質選択を使用すること、土壌T1植物を成長させ、それらが発芽直後の葉をスクリーニングすることによって行われた、ステップは、以前に他の植物種のためのフローラルディップにおける標準として使用した。葉の直接PCRテストを実行し、適切なT-DNAプライマーを用いて、陽性形質転換体を迅速に選択することができる。この技術は、簡単で安価かつ容易に実施することが、まだ以前シロイヌナズナこの方法1,10,12を使用して、他の植物種について報告されたものよりもはるかに高い変換率をもたらす。また、亜麻の最高報告変換率である。
そのしかし、最高の花の段階の選択および最高の界面活性剤濃度を含む手順における重要なステップは、あるアグロバクテリウムは、花器官を殺すことなく、植物細胞に浸透することができる。初期の芽段は0.05%以下の高シルウェット-77濃度( 図2A)を使用した場合、花は種を開発したり設定しません。後期蕾ステージが( 図2C)を使用する場合、変換が動作するかもしれないが、それははるかに低いレートで発生する。同様の結果は、 シロイヌナズナフローラルディップ変換1,4で得られた。このプロトコルでは、すべての花のステージは、第二の浸漬で、続いて別のシルウェット-77の濃度で試験した、最高のステージは、第1の浸漬のための0.05%で、シルウェット-77との中間の芽の段階( 図2C)であることが決定された0.03%のわずかに減少シルウェット-77濃度の後期の芽段( 図2C)。変換はまた続いて、0.003%の低シルウェット-77濃度の初期の芽段( 図2A)を使用して、うまくいった0.05%の高いシルウェット-77濃度の中間の芽段( 図2B)と第二の浸漬。
このプロトコルでは、いくつかの他のパラメータは、変換速度を最適化しようとしたが、最終結果に影響を及ぼさないことが見出された。例としては、植物が彼らの側に置き、1日から2日後にプラスチックでカバーされていることを浸漬した後の時間を延長すること; アグロバクテリウム培養に1以上のODを使用する代わりに、0.5から1。 15分の代わりに1 – – 2分間5に浸漬時間を増大させる。ここでも我々はこれらの戦略を用いた形質転換率に影響を気づいていない。最も効果的な要因は、しかし、正確な花の段階で健康な植物を使用して、最良のSilwet-77濃度を用いていることが見出された。我々は2つの浸漬間隔は、1時間の浸漬でも動作するにもかかわらず、何らかの形でより良いより1時間を働くことに気づいた。
このプロトコルへの変更は、reducinによって達成することができる第二または第三の浸漬で、わずか0.003%にまでGのSilwet-77濃度。シルウェット-77は有毒であるため、花濃度が高すぎる結果がない種子収量をもたらし、不十分な発展途上。植物は健康見ていないと芽がよく開発されていない場合、第二又は第三の事象が解消して浸漬周波数は、一つに削減することができる。
この技術の主な制限は、亜麻、それぞれの花から得られた種子の数が限られ、亜麻の長いライフサイクルによって生成される花の数が少ないことである。 T1世代に到達するために10週間後に浸漬 – 最初の浸漬の準備が主な芽と追加の8を持っているシード播種から8週間 – それは、6かかります。合計で5〜6 – ヶ月T1世代を得るために必要とされる。他の植物種とは異なり、その年の花いつでも、いくつかの亜麻の品種特定の時間年間でより良い花。だから、この技術のための思慮深い計画が重要です。
<p cl要約するとお尻= "jove_content">、二つの異なる亜麻品種とのフローラルディップの我々の結果:繊維亜麻、ストアモントシーラス(応答性プラスチック)、およびオイル亜麻、ベスーン(安定した非応答)は、そのアグロバクテリウムを表示-フローラルディップを介して媒介植物形質転換は、亜麻の形質転換のために適用可能で効率的な方法であり、亜麻形質転換のために以前に使用されている技術を置き換えるために使用することができる。このプロトコルでフローラルディップ法の修正は、他の植物種での使用に適用し、亜麻、これらに限定されないであろう。The authors have nothing to disclose.
This work was supported by the Ogelbay fund.
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
Flax seeds of the original Stormont Cirrus variety (PL) | |||
5" pots | |||
potting soil | |||
greenhouse with appropriate light setting | |||
Thermocycler | |||
Agarose gel electropheresis equipment | |||
digital imaging setup | |||
Silwet-77 | LEHLE SEEDS | VIS-01 | Toxic, wear gloves |
GoTaq Green Master Mix | promega | Part# 9PIM712 | |
Terra PCR Direct Polymerase Mix | Clontech | 639270 | |
Binary vector PRI 909 | Takara | 3260 | |
Agrobacterium tumefaciens LBA4404 E | Takara | 9115 | |
TOPO TA cloning kit | invitrogen | K4595-01 | |
sucrose | fischer scientific | ||
electroporator and cuvettes | bio-Rad | 165-2092 | |
Shaker | |||
spinner | |||
platic wrap and aluminum foil wrap | |||
speedSTAR DNA polymerase | Takara | RR070A/B | |
QlAquick gel extraction kit | Qiagen | 28704 | |
QIAGEN plasmid mini kit | Qiagen | 12123 | |
SalI-HF enzyme | NEB | R3138S | |
SacI-HF enzyme | NEB | R3156S | |
T4 DNA ligation kit | NEB | M0202 | |
Murashige Skoog | sigma | M5524 | |
Agar | fisher scintific | A360-500 |