The protocol for fabrication and operation of field dewetting devices (Field-DW) is described, as well as the preliminary studies of the effects of electric fields on droplet contents.
Digital microfluidics (DMF), a technique for manipulation of droplets, is a promising alternative for the development of “lab-on-a-chip” platforms. Often, droplet motion relies on the wetting of a surface, directly associated with the application of an electric field; surface interactions, however, make motion dependent on droplet contents, limiting the breadth of applications of the technique.
Some alternatives have been presented to minimize this dependence. However, they rely on the addition of extra chemical species to the droplet or its surroundings, which could potentially interact with droplet moieties. Addressing this challenge, our group recently developed Field-DW devices to allow the transport of cells and proteins in DMF, without extra additives.
Here, the protocol for device fabrication and operation is provided, including the electronic interface for motion control. We also continue the studies with the devices, showing that multicellular, relatively large, model organisms can also be transported, arguably unaffected by the electric fields required for device operation.
The miniaturization of devices that work with liquids is of paramount importance for the development of “lab-on-a-chip” platforms. In this direction, the last two decades have witnessed a significant progress in the field of microfluidics, with a variety of applications.1-5 Contrasting with the transport of fluid in enclosed channels (channel microfluidics), DMF manipulates droplets on arrays of electrodes. One of the most attractive merits of this technique is the absence of movable parts to transport fluids, and motion is instantly stopped by turning off electric signals.
However, droplet motion is dependent on droplet contents, certainly an undesirable characteristic for a universal “lab-on-a-chip” platform. Droplets containing proteins and other analytes stick to device surfaces, becoming unmovable. Arguably, this has been the major limitation for broadening the scope of DMF applications;6-8 alternatives to minimize the unwanted surface fouling involve the addition of extra chemical species to the droplet or its surroundings, which could potentially affect droplet content.
Previously, our group developed a device to allow the transport of cells and proteins in DMF, without extra additives (Field-DW devices).9 This was achieved by combining a surface based on candle soot,10 with a device geometry that favors droplet rolling and leads to an upward force on the droplet, further decreasing droplet-surface interaction. In this approach, droplet motion is not associated with surface wetting.11
The goal of the detailed method described below is to produce a DMF device capable of transporting droplets containing proteins, cells, and entire organisms, without extra additives. The Field-DW devices pave the way for fully controlled platforms working largely independently of droplet chemistry.
Here, we also present simulations showing that, despite the high voltage required for device operation, the voltage drop across the droplet is a small fraction of the applied voltage, indicating negligible effects on bioanalytes inside the droplet. In fact, preliminary tests with Caenorhabditis elegans (C. elegans), a nematode used for a variety of studies in biology, show that worms swim undisturbed as voltages are applied.
The most critical step of the protocol is the protection of the soot layer, directly associated with the success in moving droplets. Metallizing the soot layer (method 1 above) allows close to 100% of fabrication success. However, the maximum operation time is about 10 min; possibly, droplet fractions are wetting the soot through holes in the metal layer. Coating the soot layer with the fluorinated liquid is the easiest and fastest alternative, and requires minimum resources, but only 40–50% of the fabricated subst…
The authors have nothing to disclose.
We thank the Lindback Foundation for financial support, and Dr. Alexander Sidorenko and Elza Chu for fruitful discussions and technical assistance, and Professor Robert Smith for assistance with the C. elegans assays.
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
Paraffin candle | Any paraffin candle | ||
Sputtering system | Denton Vacuum, Moorestown, NJ | Sputter coater Desk V HP equipped with an Au target. | |
1-dodecanethiol | Sigma-Aldrich | 471364 | |
Teflon | Dupont | AF-1600 | |
Fluorinert FC-40 | Sigma-Aldrich | F9755 | Fluorinated liquid: Prepare Teflon-AF resin in Fluorinert FC-40, 1:100 (w/w), to create the hydrophobic coating. |
Graphic design software -Adobe Illustrator | Adobe Systems | Other softwares might be used as well. | |
Copper laminate | Dupont | LF9110 | |
Laser Printer | Xerox | Phaser 6360 or similar | Check for the compatibility with "rich black" or "registration black" (see text). |
Copper Etchant | Transene | CE-100 | |
Perfluoroalkoxy (PFA) film | McMaster-Carr | 84955K22 | |
Breadboard | Allied Electronics | 70012450 or similar | Large enough to allow the assemble of 10 drivers. |
Universal circuit board | Allied Electronics | 70219535 or similar | |
Connector | Allied Electronics | 5145154-8 or similar | |
Control board and control program (LabView software) | National Instruments | NI-6229 or similar | |
High-voltage amplifier | Trek | PZD700 | |
Resistor R 27 kΩ, 1/4 W | Allied | 2964762 | |
Capacitors C and C1, 100 nF, 60 V | Allied | 8817183 | |
Transistor T, NPN | Allied | 9350289 | |
Diode D, 1N4007 | Allied | 2660007 | |
Relay | Allied | 8862527 | |
Visualization system | Edmund Optics | VZM 200i or similar | System magnification 24X- 96X. It is combined with a Hitachi KP-D20B 1/2 in CCD Color Camera. |
Recorder | Sony | GV-D1000 NTSC or similar | It is connected to the camera by an S-video cable. |
Simulations | COMSOL Multiphysics | V. 4.4 |