ニワトリ胚網膜細胞培養物は、感光体の生物学の研究のための貴重なツールを構成しています。私たちは文化の前に網膜のプラスミドエレクトロポOVOの元に基づいて、効率的な遺伝子導入技術を開発しました。この技術はかなりこのシステムの実現可能な遺伝子操作を行う、現在利用可能なプロトコルを介してトランスフェクション効率を向上させます。
ニワトリ胚の網膜由来錐体光受容体に富む文化が網膜神経細胞、特に光受容体の生物学を研究し、世界中の研究者のための不可欠なツールとなっています。それらは容易に薬剤開発のためのハイスループット技術に適合させることができるように、このシステムのアプリケーションは、基本的な研究を越え。しかし、これらの培養物における網膜の光受容体の遺伝子操作は、システムの有用性に重要な制限を装った、非常に困難であることが判明しています。我々は最近開発され、現在利用可能な他のプロトコル1に比べて5倍これらの培養物における網膜細胞のトランスフェクションの速度を増加させるプラスミドのエレクトロポレーション技術OVOの元を検証しています。この方法では、ニワトリ胚の眼は、段階27で摘出され、RPEを除去し、そして網膜のカップは、プラスミド含有溶液中に配置されており、容易に構築お客を用いてエレクトロポレーション電極を作りました。網膜は、次に解離し、標準的な手順を用いて培養されます。この技術は、一般的に感光体集団の25%において導入遺伝子の発現を達成する、プラスミドドリブンRNAi技術の使用を介して、例えば、過剰発現の研究に、ならびに遺伝子発現のダウンレギュレーションにも適用することができます。現在の出版物のビデオフォーマットは、一次網膜培養における遺伝子機能の研究を可能にする、分野の研究者にこの技術が簡単にアクセスできるようになります。また、成功した結果と再現性のために、この手順の重要なステップの詳細な説明が含まれています。
ニワトリ胚の網膜からの解離細胞培養物は、広く生存2-9、10-12分化、神経突起伸長13、などを含む光受容体細胞生物学のさまざまな側面を研究するために使用されています。このシステムの利点は、ルーベン・アドラーと共同研究者によって1980年代に開発され、彼と他のグループ14-20によって完成は、動物モデル21としてひよこの固有の特性に存在します。でも、胚の段階でニワトリ目の大きなサイズは、培養のための材料を大量に提供します。培養物は、胚日(ED)5使用して実行されたときにまた、 – 6網膜を、55 -この動物における光受容体の約86%であるので、それらの前駆細胞の80%が光受容体14,15,18,22,23として区別し、コーン24は 、これらの培養物は、この細胞型に焦点を当てた研究のために特に適しています。
我々は最近、develoを持っていますPEDは、したがって、遺伝missexpression研究1を容易にすることによって、このシステムの有用性を広げ、これらの培養物中の細胞の高効率プラスミドトランスフェクションを可能にする簡単な方法を特徴とします。この技術の開発は、細胞自律的に遺伝子機能の研究を可能にするために、トランスフェクションの許容レベルを提供する方法の科学文献中の空隙から茎。主な神経細胞培養は25,26をトランスフェクトするために悪名高い困難なので、これは一部にはあります。この目的のために以前に利用可能な最も一般的に使用される技術の一部は、3-5%の順に効率をもたらすようなリポフェクション、またはリン酸カルシウム媒介トランスフェクションなどの化学的トランスフェクション法を含めて、かなりの毒性27-32を発揮することができます 。酵素レポーター系とプラスミドの使用は、信号を増幅することによって悪いトランスフェクション効率の問題を回避することができるにもかかわらず、彼らはしないでください細胞特異的な効果を識別し、その結果、全体の代表ではないかもしれない小さな細胞集団に基づいています。ひよこのもう一つの広く使用されている方法は、RCASウイルス感染は、増殖細胞にのみ適用し、このプライマリ網膜培養系33に適していないです。
現在のプロトコルではニワトリ胚の目はステージ27(ED 5)、網膜色素上皮(RPE)が除去され、網膜のカップは、プラスミドを含む溶液で満たされたエレクトロポレーションチャンバ内に配置さで摘出し、使用してエレクトロポレーションされているカスタムメイド標準的な技術21を使用して網膜の解離と培養した電極、。この手順を最適化した後、我々は、生存および分化の特性を損なうことなく、一貫して、培養中の細胞の総数の22%単独感光集団内の25%のオーダーでのトランスフェクション効率を達成することができました文化1。ここでは、この技術の成功と再現性を確保するために、この手順のすべての重要なステップを概説し、詳細なプロトコルを提供します。
このプロトコルの成功のための最も重要なステップは、胚の適切な段階を選択することです。以前の出版物では、胚の段階の範囲は、一般に、インキュベーションまたは胚日の日(ED)によって定義され、これらの培養のために与えられています。したがって、通常、EDに6胚をED 5を使用して同等の結果をもたらすと仮定されます。しかし、我々は、上記のように、ステージ27(ED 5)に、トラ?…
The authors have nothing to disclose.
We would like to acknowledge David O’Brien for his support with data analysis, and all the members of the Canto-Soler lab for their critical discussions. This work was supported by NIH grants EY004859 and EY022631 (MVCS), Core Grant EY1765, and an unrestricted departmental grant from Research to Prevent Blindness, Inc.
ECM 830 Electro Square Porator | BTX/ Harvard Apparatus | 45-0052 | |
Genetrode, L-Shaped, 5 mm Gold Tip | BTX/ Harvard Apparatus | 45-0115 model 512 | Gold tipped electrode used as anode |
Polyimide Tubing | Vention Medical | custom made | Internal Diameter: 0.5mm / wall thickness: 0.15-0.2mm. Used for insulating gold tiped electrode |
2.5mm square box filament, 4.5mm wide | Sutter Instrument Company | FB245B | Used to make cathode electrode |
HBSS, no calcium, no magnesium, no phenol red | Gibco – Life Technologies | 14175-095 | |
Moloney forceps | Roboz | RS-8254 | Serrated; Slight Curve; 4.5" Length |
Dumont tweezers 5/45 | Roboz | RS-5058 | Pattern #5, 45 Degree Angle; .10 X .06mm Tip Size; 109mm Length |
Bonn micro forceps, 1×2 teeth | Roboz | RS-5172 | Tying Platform; 1X2 Teeth, 0.12mm Teeth; 3.75" Length; .3mm Tip Width |