Oxide nanostructures provide new opportunities for science and technology. The interfacial conductivity between LaAlO3 and SrTiO3 can be controlled with near-atomic precision using a conductive atomic force microscopy technique. The protocol for creating and measuring conductive nanostructures at LaAlO3/SrTiO3 interfaces is demonstrated.
Oxide nanoelectronics is a rapidly growing field which seeks to develop novel materials with multifunctional behavior at nanoscale dimensions. Oxide interfaces exhibit a wide range of properties that can be controlled include conduction, piezoelectric behavior, ferromagnetism, superconductivity and nonlinear optical properties. Recently, methods for controlling these properties at extreme nanoscale dimensions have been discovered and developed. Here are described explicit step-by-step procedures for creating LaAlO3/SrTiO3 nanostructures using a reversible conductive atomic force microscopy technique. The processing steps for creating electrical contacts to the LaAlO3/SrTiO3 interface are first described. Conductive nanostructures are created by applying voltages to a conductive atomic force microscope tip and locally switching the LaAlO3/SrTiO3 interface to a conductive state. A versatile nanolithography toolkit has been developed expressly for the purpose of controlling the atomic force microscope (AFM) tip path and voltage. Then, these nanostructures are placed in a cryostat and transport measurements are performed. The procedures described here should be useful to others wishing to conduct research in oxide nanoelectronics.
Heteroestructuras Óxido 1-5 muestran una notable variedad de fenómenos físicos emergentes que son tanto científicamente interesante y potencialmente útil para aplicaciones 4. En particular, la interfaz entre LaAlO3 (LAO) y SrTiO3 (STO) 6 puede exhibir aislante, la realización, superconductores 7, ferroeléctrico-como 8, 9 y ferromagnético comportamiento. En 2006, Thiel et al mostraron que 10 hay una transición brusca-aislante-metal como el espesor de la capa de LAO se incrementa, con un espesor crítico de 4 celdas unitarias (4UC). Posteriormente se demostró que las estructuras 3uc-LAO/STO exhiben una transición de histéresis que puede ser controlado localmente con un microscopio de fuerza atómica conductora (C-AFM) de la sonda 11.
Las propiedades de las interfaces de óxido tales como LaAlO3 / SrTiO3 dependen de la ausencia o presencia de llevar a caboelectrones en la interfase. Estos electrones se pueden controlar con los mejores electrodos de puerta 12,13, compuertas traseras 10, superficie adsorbatos 14, capas ferroeléctricos 15,16 y c-AFM litografía 11. Una característica única de c-AFM litografía es que muy pequeñas características a nanoescala se pueden crear.
Gating top eléctrico, combinado con reclusión de dos dimensiones, se utiliza a menudo para crear puntos cuánticos en semiconductores III-V 17. Alternativamente, los nanocables semiconductores cuasi-unidimensionales pueden gated eléctricamente por proximidad. Los métodos para producir estas estructuras son mucho tiempo y generalmente irreversible. Por el contrario, la técnica de la litografía C-AFM es reversible en el sentido de que una nanoestructura se puede crear para un experimento, y luego "borrado" (similar a una pizarra). En general, la escritura c-AFM se realiza con tensiones positivas aplicadas a la punta del AFM, mientras que, borrandose realiza utilizando voltajes negativos. El tiempo requerido para crear una estructura particular depende de la complejidad del dispositivo, pero es por lo general menos de 30 min; mayor parte de ese tiempo se dedica a borrar el lienzo. La resolución espacial típica es de unos 10 nanómetros, pero con ajuste adecuado características tan pequeñas como 2 nanómetros se pueden crear 18.
Una descripción detallada del procedimiento de fabricación de nanoescala sigue. El detalle que figura aquí debería ser suficiente para que experimentos similares a realizar por los investigadores interesados. El método descrito aquí tiene muchas ventajas sobre los enfoques litográficas tradicionales utilizados para crear nanoestructuras electrónicos en los semiconductores.
El método de litografía c-AFM aquí descrito forma parte de una clase mucho más amplia de los esfuerzos de la litografía basada en sonda de barrido, incluyendo la oxidación anódica de exploración 19, nanolitografía dip-pen 20, patrones piezoeléctrico21, y así sucesivamente. La técnica de c-AFM se describe aquí, junto con el uso de interfaces de óxido de nuevos, puede producir algunas de las estructuras electrónicas de más alto de precisión con una variedad sin precedentes de propiedades físicas.
Successful creation of nanostructures depends on several critical steps. It is important that the LAO/STO samples are grown with a thickness that is known to be at the boundary between the insulating and conductive phase. (Details of sample growth fall outside the scope of this paper, but are crucial for overall success.) Second, it is important to have relative humidity within the range 25-45% for successful c-AFM writing. Values below 25% are unlikely to produce conductive nanostructures, while too high humidity will generally produce uncontrollably large features. Also, temperature control of the AFM is important if the c-AFM tip needs to achieve precise registry over long periods of time. Once the nanostructures are created, they must be placed in a vacuum environment if experiments lasting longer than a few hours are to be performed. For the experiments described here, the structure is created and within minutes transferred to a vacuum environment.
It is recommend before writing that a “writing test” be performed on all relevant electrodes. In such a test, two virtual electrodes are first created, and a single nanowire is written while simultaneously monitoring the conductance. A similar test of erasure can be performed by “cutting” the nanowire shortly afterwards. If the nanostructure is decaying rapidly, the issue is most likely due either to the interfacial contacts or the canvas itself. To distinguish between these two effects, a four-terminal measurement of the conductance should be performed, and the two-terminal conductance should be compared with the four-terminal conductance as a function of time. If the two-terminal conductance is decaying more rapidly than the four-terminal conductance, then the issue is related to the electrical contacts to the interface. If the four-terminal conductance is decaying at a comparable rate, then most likely the canvas is not suitable and should be replaced.
There are natural limitations of the current method for creating nanostructures. Specifically, the writing speed for the smallest devices is limited to a few hundred nanometers per second. Speeds far above that value lead to unpredictable results. Use of parallel writing techniques are possible27,28, but are not highly developed and have their own drawbacks. The size of nanostructures that can be created is naturally limited by the scan range of the AFM being used. A high-quality AFM with closed-loop feedback in the two scan directions is highly recommended. Tracking of point-like objects on the sample surface should be performed to monitor temporal drift of the sample.
Once creation of conductive nanostructures at oxide interfaces has been mastered, there are a wide range of experimental directions that can be explored. Using this technique, a wide variety of nanostructures and devices have already been demonstrated, including nanowires18, tunnel barriers29, rectifying junctions30, field-effect transistors18, single-electron transistors31, superconducting nanowires32, nanoscale optical detectors33, and nanoscale THz emitters and detectors34.
The authors have nothing to disclose.
The long-standing collaboration with Chang-Beom Eom at the University of Wisconsin-Madison, who provided the LAO/STO samples, is gratefully acknowledged. Video editing assistance from Christopher Solis is greatly appreciated. This work is supported by NSF (DMR-1104191, DMR-1124131), ARO (W911NF-08-1-0317), and AFOSR (FA9550-10-1-0524, FA9550-12-1-0268, FA9550-12-1-0057).
Name | Company | Catalog Number | Comments |
Equipment | |||
Contact Aligner | Karl-Suss | MA6 | |
Spinner | Solitec | 5110C | |
Ion Mill | Commonwealth Scientific | 8C | |
Sputtering System | Leybold-Heraeus | Z-650 | |
Barrel Etcher | Branson/IPC | 3000C | |
Wire Bonder | Westbond | 7700E | |
AFM | Asylum Research | MFP-3D | |
Dilution Refrigerator | Quantum Design | P850 | |
Ultrasonic Wash Machine | Fisher Scientific | 15-335-6 | |
Current Amplifier | Femto | DLPCA-200 | |
Materials | |||
LaAlO3/SrTiO3 | Prof. Chang-Beom Eom | N/A | 5mm x 1mm with ~3.4 unit cells of LAO (See Reference 18) |
Photoresist | AZ Electronic Materials | P4210 | |
Developer | AZ Electronic Materials | 400K | |
Acetone | Fisher Scientific | A929SK-4 | |
Isopropyl Alcohol | Fisher Scientific | A459-1 | |
Deionized Water | Fisher Scientific | 23-290-065 | |
Gold Wire | DuPont | 5771 | 1 mil diameter |
Chip Carrier | NTK Technologies | IRK28F1-5451D |