Oxide nanostructures provide new opportunities for science and technology. The interfacial conductivity between LaAlO3 and SrTiO3 can be controlled with near-atomic precision using a conductive atomic force microscopy technique. The protocol for creating and measuring conductive nanostructures at LaAlO3/SrTiO3 interfaces is demonstrated.
Oxide nanoelectronics is a rapidly growing field which seeks to develop novel materials with multifunctional behavior at nanoscale dimensions. Oxide interfaces exhibit a wide range of properties that can be controlled include conduction, piezoelectric behavior, ferromagnetism, superconductivity and nonlinear optical properties. Recently, methods for controlling these properties at extreme nanoscale dimensions have been discovered and developed. Here are described explicit step-by-step procedures for creating LaAlO3/SrTiO3 nanostructures using a reversible conductive atomic force microscopy technique. The processing steps for creating electrical contacts to the LaAlO3/SrTiO3 interface are first described. Conductive nanostructures are created by applying voltages to a conductive atomic force microscope tip and locally switching the LaAlO3/SrTiO3 interface to a conductive state. A versatile nanolithography toolkit has been developed expressly for the purpose of controlling the atomic force microscope (AFM) tip path and voltage. Then, these nanostructures are placed in a cryostat and transport measurements are performed. The procedures described here should be useful to others wishing to conduct research in oxide nanoelectronics.
Oxide heterostructuren 1-5 vertonen een opvallend groot aantal optredende fysische verschijnselen die zowel wetenschappelijk interessant en nuttig kunnen zijn voor toepassingen 4 zijn. In het bijzonder kan de interface tussen LaAlO 3 (LAO) en SrTiO3 (STO) 6 vertonen isolerende, geleidende, supergeleidende 7, ferro-achtige 8 en 9 ferromagnetische gedrag. In 2006, Thiel et al. toonde aan dat 10 er een sterke isolator-metaal overgang zo de dikte van de LAO laag wordt verhoogd, met een kritische dikte van 4 eenheidscellen (4uc). Later werd aangetoond dat 3uc-LAO/STO structuren vertonen een hysteretisch overgang die plaatselijk kan worden bediend met een geleidende atomic force microscoop (c-AFM) sonde 11.
De eigenschappen van oxide interfaces zoals LaAlO 3 / SrTiO3 afhankelijk van de afwezigheid of aanwezigheid van geleidendeelektronen bij het grensvlak. Deze elektronen kunnen worden gecontroleerd met behulp van top gate 'elektroden 12,13, rug poorten 10, oppervlak adsorbaten 14, ferro-elektrische lagen 15,16 en c-AFM lithografie 11. Een uniek kenmerk van c-AFM lithografie is dat zeer kleine nanoschaal functies kunnen worden gecreëerd.
Elektrische top gating, gecombineerd met tweedimensionale opsluiting wordt vaak gebruikt om quantum dots in III-V halfgeleiders 17 creëren. Als alternatief kan quasi-eendimensionale halfgeleidende nanodraden elektrisch worden afgesloten door nabijheid. De werkwijzen voor het produceren van deze structuren zijn tijdrovend en in het algemeen onomkeerbaar. Daarentegen, de c-AFM lithografie techniek is omkeerbaar in de zin dat een nanostructuur kan worden gemaakt voor een experiment, en daarna "gewist" (vergelijkbaar met een whiteboard). In het algemeen wordt c-AFM schriftelijk uitgevoerd met positieve spanningen toegepast op de AFM tip, terwijl, het wissenwordt uitgevoerd met negatieve spanningen. De tijd nodig om een bepaalde structuur te creëren afhankelijk van de complexiteit van het apparaat, maar is meestal minder dan 30 minuten; het grootste deel van die tijd wordt besteed aan het wissen van het doek. De typische ruimtelijke resolutie van ongeveer 10 nanometer, maar met de juiste afstemming functies zo klein als 2 nanometer kan worden aangemaakt 18.
Een gedetailleerde beschrijving van de nanoschaal procedure volgt. De details die hier moet voldoende zijn om soortgelijke experimenten worden uitgevoerd door geïnteresseerde onderzoekers. De hier beschreven methode heeft veel voordelen ten opzichte van traditionele lithografische benaderingen gebruikt om elektronische nanostructuren te maken in halfgeleiders.
De c-AFM lithografie hier beschreven methode is onderdeel van een veel bredere klasse van scanning-probe-based lithografie inspanningen, waaronder het scannen anodeoxydatie 19 dip-pen nanolithografie 20, piëzo-elektrische patronen21, enzovoort. De c-AFM-techniek hier beschreven, in combinatie met het gebruik van nieuwe oxide interfaces, kunnen enkele van de hoogste precisie elektronische structuren te produceren met een ongekende verscheidenheid van fysieke eigenschappen.
Successful creation of nanostructures depends on several critical steps. It is important that the LAO/STO samples are grown with a thickness that is known to be at the boundary between the insulating and conductive phase. (Details of sample growth fall outside the scope of this paper, but are crucial for overall success.) Second, it is important to have relative humidity within the range 25-45% for successful c-AFM writing. Values below 25% are unlikely to produce conductive nanostructures, while too high humidity will generally produce uncontrollably large features. Also, temperature control of the AFM is important if the c-AFM tip needs to achieve precise registry over long periods of time. Once the nanostructures are created, they must be placed in a vacuum environment if experiments lasting longer than a few hours are to be performed. For the experiments described here, the structure is created and within minutes transferred to a vacuum environment.
It is recommend before writing that a “writing test” be performed on all relevant electrodes. In such a test, two virtual electrodes are first created, and a single nanowire is written while simultaneously monitoring the conductance. A similar test of erasure can be performed by “cutting” the nanowire shortly afterwards. If the nanostructure is decaying rapidly, the issue is most likely due either to the interfacial contacts or the canvas itself. To distinguish between these two effects, a four-terminal measurement of the conductance should be performed, and the two-terminal conductance should be compared with the four-terminal conductance as a function of time. If the two-terminal conductance is decaying more rapidly than the four-terminal conductance, then the issue is related to the electrical contacts to the interface. If the four-terminal conductance is decaying at a comparable rate, then most likely the canvas is not suitable and should be replaced.
There are natural limitations of the current method for creating nanostructures. Specifically, the writing speed for the smallest devices is limited to a few hundred nanometers per second. Speeds far above that value lead to unpredictable results. Use of parallel writing techniques are possible27,28, but are not highly developed and have their own drawbacks. The size of nanostructures that can be created is naturally limited by the scan range of the AFM being used. A high-quality AFM with closed-loop feedback in the two scan directions is highly recommended. Tracking of point-like objects on the sample surface should be performed to monitor temporal drift of the sample.
Once creation of conductive nanostructures at oxide interfaces has been mastered, there are a wide range of experimental directions that can be explored. Using this technique, a wide variety of nanostructures and devices have already been demonstrated, including nanowires18, tunnel barriers29, rectifying junctions30, field-effect transistors18, single-electron transistors31, superconducting nanowires32, nanoscale optical detectors33, and nanoscale THz emitters and detectors34.
The authors have nothing to disclose.
The long-standing collaboration with Chang-Beom Eom at the University of Wisconsin-Madison, who provided the LAO/STO samples, is gratefully acknowledged. Video editing assistance from Christopher Solis is greatly appreciated. This work is supported by NSF (DMR-1104191, DMR-1124131), ARO (W911NF-08-1-0317), and AFOSR (FA9550-10-1-0524, FA9550-12-1-0268, FA9550-12-1-0057).
Name | Company | Catalog Number | Comments |
Equipment | |||
Contact Aligner | Karl-Suss | MA6 | |
Spinner | Solitec | 5110C | |
Ion Mill | Commonwealth Scientific | 8C | |
Sputtering System | Leybold-Heraeus | Z-650 | |
Barrel Etcher | Branson/IPC | 3000C | |
Wire Bonder | Westbond | 7700E | |
AFM | Asylum Research | MFP-3D | |
Dilution Refrigerator | Quantum Design | P850 | |
Ultrasonic Wash Machine | Fisher Scientific | 15-335-6 | |
Current Amplifier | Femto | DLPCA-200 | |
Materials | |||
LaAlO3/SrTiO3 | Prof. Chang-Beom Eom | N/A | 5mm x 1mm with ~3.4 unit cells of LAO (See Reference 18) |
Photoresist | AZ Electronic Materials | P4210 | |
Developer | AZ Electronic Materials | 400K | |
Acetone | Fisher Scientific | A929SK-4 | |
Isopropyl Alcohol | Fisher Scientific | A459-1 | |
Deionized Water | Fisher Scientific | 23-290-065 | |
Gold Wire | DuPont | 5771 | 1 mil diameter |
Chip Carrier | NTK Technologies | IRK28F1-5451D |