皮質ネットワークは抑制性介在ニューロンの小さいが、多様なセットで制御されます。介在ニューロンの機能的研究は、そのためターゲットを絞った記録や厳密な識別を必要とします。ここで説明するには、単一または細胞内の標識と神経細胞のシナプス結合のペア、事後形態学的および免疫細胞化学分析からホールセル記録を含む組み合わされたアプローチです。
GABA作動性抑制性介在は、脳の神経回路内の中心的な役割を果たしている。介在ニューロンは、ニューロン集団(10〜20%)の小規模なサブセットを含みますが、その多様な機能を反映して、生理的、形態学的および神経化学的不均質性の高いレベルを示している。したがって、介在ニューロンの調査は、組織の原則と神経回路の機能に重要な洞察を提供しています。しかし、これは、個別の介在ニューロンの種類の選択と識別のための統合された生理学的および神経解剖学的アプローチが必要です。トランスジェニック動物の急性脳切片からの全細胞パッチクランプ記録、ニューロン特異的マーカーのプロモーターの下で蛍光タンパク質を発現し、標的とし、電気生理学的に、特定のニューロン型の内因性及びシナプスの特性を特徴付けるための効率的な方法を提供する。細胞内の色素の標識と組み合わせることで、このアプローチは、事後カ月で拡張することができますrphologicalおよび免疫細胞化学分析、記録されたニューロンの体系的な識別を可能にします。これらの方法は、皮質ニューロンの多様な種類の機能的特性に関する科学的問題の広い範囲に合うように調整することができる。
海馬神経回路は、長い、それらの学習と記憶に重要な役割だけでなく、ヒトとげっ歯類の両方における空間ナビゲーションに、解剖学と生理学の両方に関して、厳しい調査の対象とされてきた。同様に、海馬の著名な、単純な層状の組織は、この領域の皮質ネットワークの構造的および機能的特性に取り組む研究の好ま対象になります。
海馬の回路は主要な興奮性細胞(> 80%)およびより小さな(10〜20%)が、抑制性介在1-3の非常に多様な集団から構成されている。介在ニューロンは、その高速なイオンチャネル型のGABA A受容体(GABA Aルピー)で作用軸索の端末と低速メタボの GABA B受容体(GABA Bルピー)からγ-アミノ酪酸(GABA)を放出4。これらの阻害のメカニズムは、励起を相殺し、主要な細胞の興奮性を調節するため、赤外線タイミング及び放電のパターン。しかし、介在ニューロンから放出されたGABAは、本人の細胞上ではなく、介在ニューロン自身5,6のみならず機能します。前とシナプス後受容体が介在ニューロンの多様な種類の中フィードバック調節および抑制の相互作用を媒介する。介在ニューロンネットワークにおけるこれらの阻害メカニズムは、異なる周波数7における特定の振動で、集団活動パターンの生成および整形の中心であると考えられる。
全細胞パッチクランプ記録は、固有の性質とニューロンのシナプスの相互作用の検査のために十分に確立された方法である。しかし、介在ニューロンの種類の高度な多様性のために、抑制性介在の調査は、記録された細胞の厳密な識別を必要とします。海馬介在ニューロンタイプが明確な形態的特徴および神経化学的マーカー発現によって特徴付けられるように、解剖学的および免疫細胞化学のE組み合わせxaminationは、正確な介在ニューロンのアイデンティティ6,8,9を決定するための手段を提供することができる。
本論文では、ゆっくりとGABA Bの特徴付けを可能にする、単一のニューロンまたはシナプス結合のペアからホールセルパッチクランプ記録は事後形態学的および免疫細胞化学分析に続いて、細胞内の標識を組み合わせた実験的なアプローチについて説明します受容体は特定さ介在ニューロンにおける阻害効果を媒介する。一例として、私たちはそのシナプス後の標的の細胞体および近位樹状突起の神経支配と「速いスパイク」(FS)ことを特徴としている介在ニューロンの一つの主要なタイプ、いわゆる「籠細胞」(BC)のサブセット、に焦点を当てる放電パターン、密細胞体層を覆う軸索、およびカルシウム結合タンパク質のパルブアルブミン(PV)10,11の発現。これらのニューロンは、大規模なシナプス後抑制電流だけでなく、著名な事前の表示GABA B R活性化12に応答して、それらのシナプス出力のシナプス変調。ここで説明される技術の組み合わせは、他の同定されたニューロンタイプのさまざまな内因性またはシナプスのメカニズムを調査するためにも同様に適用することができる。
私たちは、機能的にin vitroでmorphologically-と神経化学的に特定したニューロンを特徴づけるために、電気生理学的および神経解剖学的手法を組み合わせた方法を記載している。特に皮質抑制性INSの多様な種類の。手順の重要なポイントは以下のとおりです潜在的なインの(1)事前選択; (2)細胞内記録とニューロンの可視化;そして最後に、(3)記録されたINSの形態学的および免疫細胞化学分?…
The authors have nothing to disclose.
著者は、彼女の優れた技術支援のための伊那ウォルターに感謝したい。 VGAT-ヴィーナストランスジェニックラットは博士によって生成された。博士A.宮脇により提供PCS2-金星を使用してY.柳川、M.平林およびY.川口生理学研究所において、岡崎、日本、。
Name | Company | Catalog Number | Comments |
Transgenic vGAT-venus rats | – | – | see Uematsu et al., 2008 |
Venus (515 nm) goggles | BLS Ltd., Hungary | – | – |
Dissection tools | i.e. FST | – | For brain removal |
Vibratome | Leica | VT1200S | Or other high end vibratome with minimal vertical oscillation |
Slice holding chambers | – | – | Custom-made in lab |
Upright IR-DIC microscope | Olympus, Japan | BX50WI | With micromanipulator system; i.e. Luigs and Neumann, Kleindiek etc. |
CCD camera | Till Photonics | VX55 | |
505 nm LED system | Cairn Research | OptiLED system | Or mercury lamp or other LED system i.e. CooLED. |
Multiclamp 700B | Axon Instruments | Alternatively 2x Axopatch 200B amplifiers | |
WinWCP acquisition software | John Dempster, Strathclyde University | – | Any quality acquisition software could be used, i.e. EPHUS, pClamp, Igor etc. |
Electrode Puller | Sutter | P-97 | Used with box-filament |
Borosilicate pipette glass | Hilgenberg, Germany | 1405020 | 2 mm outer, 1 mm inner diameter, no filament |
Peristaltic pump | Gilson | Minipuls | Other pumps or gravity feed could be used instead |
Digital Thermometer | – | – | Custom made |
Digital Manometer | Supertech, Hungary | – | |
Isolated constant voltage stimulator | Digitimer, Cambridge | DS-2A | – |
Biocytin | Invitrogen | B1592 | Otherwise known as ε-Biotinoyl-L-Lysine |
DL-AP5(V) disodium salt | Abcam Biochemicals | ab120271 | |
DNQX disodium salt | Abcam Biochemicals | ab120169 | Alternatively NBQX or CNQX |
Gabazine (SR95531) | Abcam Biochemicals | ab120042 | Alternatively bicuculline methiodide |
R-Baclofen | Abcam Biochemicals | ab120325 | |
CGP-55,845 hydrochloride | Tocris | 1248 | |
Streptavidin 647 | Invitrogen | S32357 | |
anti-PV mouse monoclonal antibody | Swant, Switzerland | 235 | Working concentration 1:5000-1:10,000 |
anti-mouse secondary antibody | Invitrogen | A11030 | If using Venus or GFP rodent using a red-channel (i.e. 546 nm) is advisable. |
Normal Goat Serum | Vector Labs | S-1000 | |
Microscopy slides | – | – | Any high quality brand |
Glass coverslips | – | – | Usually 22 x 22 mm |
Agar spacers | – | – | Agar block, cut on vibratome to 300 μm |
Laser scanning confocal microscope | Olympus, Japan | Fluoview FV1000 | Or other comparable system |
Fiji (Fiji is just ImageJ) | http://fiji.sc/Fiji | – | See Schindelin et al., 2012 |