Summary

Çift Renkli Zaman-kapılı Uyarılmış Emisyon tükenmesi (STED) Nanoscopy tarafından İmmünoloji Synapse görselleştirme

Published: March 24, 2014
doi:

Summary

Here we illustrate the protocol for imaging by two-color STED nanoscopy the cytotoxic immune synapse of NK cells recapitulated on glass. Using this method we obtain sub-100 nm resolution of synapse proteins and the cytoskeleton.

Abstract

Doğal katil hücreler veya viral yönden enfekte tümörijenik hücrelerin lize etmek için sıkı bir şekilde düzenlenmiştir, ince ayarlı bir immünolojik sinaps (IS) oluşturur. Dinamik aktin tadilatı NK hücrelerin fonksiyonu ve IS oluşumu için çok önemlidir. Sinaps F-aktin Görüntüleme geleneksel ancak ışık kırılma sınır yaklaşık 200 nm, konfokal de dahil olmak üzere, flüoresan mikroskopi çözünürlüğünü sınırlandırır, konfokal mikroskopi kullanmıştır. Görüntüleme teknolojisindeki son gelişmeler subdiffraction sınırlı süper çözünürlük görüntüleme gelişmesini sağlamıştır. IS F-aktin mimarisi görselleştirmek için cam üzerinde reseptörü aktive NK hücreleri kalarak NK hücre sitotoksik sinaps özetlemek. Biz daha sonra iki-renkli uyarılmış emisyon tükenmesi mikroskobu (STED'in) kullanarak ilgi görüntü proteinleri. Bu, sinaps <80 nm çözünürlükte sonuçlanır. Bu yazıda numune hazırlama ve çift col kullanarak görüntüleri edinimi adımları açıklarveya NK F-aktin görselleştirmek STED'in nanoscopy IS. Biz de Leica SP8 yazılım ve zaman-kapılı STED'in kullanarak örnek edinme optimizasyonu göstermektedir. Son olarak, görüntülerin post-processing deconvolution için Huygens yazılımı kullanmak.

Introduction

Immünolojik sinaps proteinleri ve hücre iskeleti elemanları sinyalizasyon karmaşık bir ortam olduğunu. Sitolitik sinaps aslında merkezi bir salgı etki 1-4 çevreleyen aktin ve yapışma moleküllerinin bir halka ile yapı gibi bir "boğa gözü" sahip olarak nitelendirildi. Ancak, şimdi bu fonksiyonu 5-11 sürekli dinamik sitoskeletal örgütlenmesini gerektirir aktif sinyalizasyon mikroskobik etki oluştuğunu biliyoruz. Sinaps hakkında şu anda sahip bilgilerin çoğu mikroskop elde edilmiştir, ve immunolojistlerden üstün görüntüleme teknolojisi erken benimseyenler olmuştur.

Böyle bir yeni teknoloji süper-çözünürlük mikroskopisidir. Geleneksel uzamsal ışık mikroskobu, yaklaşık 200 nm 'de dahil olmak üzere tüm konfokal floresan mikroskobu için çözünürlük alt sınırı, setleri ışık kırılma bariyer ile sınırlıdır. Son yıllarda, çeşitli teknikler geliştirmek olmuşturçözünürlüğü kırınım bariyerin altında izin d. Bu uyarım emisyon tükenmesi mikroskobu (STED'in), yapılandırılmış aydınlatma mikroskobu (SIM), davranışsal çözüldü mikroskobu (FIRTINA) ve fotoaktıfleştırılebılır ışık mikroskobu (PALM) içerir. Bu teknikler yerlerinde detaylı olarak 12-15 gözden geçirilmiş, ancak aşağıda özetlenmiştir. Subdiffraction sınırlı çözünürlük her sistemde benzersiz şekilde oluşturulur. Süper çözünürlük tekniğinin seçimi, bu nedenle, ilgi konusu deney ve deneysel sistem tarafından dikte edilmelidir.

STED süper çözünürlük subdiffraction sınırlı floresan mikroskobu 16-18 sonuçlanan uyarma sonrasında her bir ilgi florofor çevresinde seçici "sessizliği" floresan yüksek yoğunluklu torroidal tükenmesi ışını kullanılarak elde edilir. STED'in bir avantajı görüntü elde etme, hızlı ve nispeten küçük bir post-processing gerektirir. Boya seçimi spec tarafından belirlenir daTicari olarak temin edilebilen sistemde 592 nm 'de yer almaktadır tükenmesi huzmesinin tral konumu, bir çok piyasada mevcut boyalar, iki florofor kombinasyonlar mümkün kılan mevcuttur. Buna ek olarak, GFP gibi yaygın olarak kullanılan floresan haberci 19,20 canlı hücre deneyleri mümkün hale görüntülenebilir.

Daha önce degranülasyon 21,22 için NK hücreleri tarafından kullanılmaktadır F-aktin hipodansitedir bölgelerini belirlemek ve ölçmek için STED'i kullandık. Biz STED'in nedeniyle floroforlar ve xy ekseninde çözünürlükte üstün iyileşme nispeten esnek durumuna bağışıklık sinaps görüntüleme için iyi bir seçim olduğunu düşünmekteyiz. Buna ek olarak, bu deney için kullanılan, ticari olarak temin STED'in sisteminde, yüksek hızlı (12,000 Hz) rezonans tarayıcının kullanılması örnekler en az hasar ile, görüntülerin elde edilmesi için hızlı sağlar. Boya seçimi sınırlı esneklik, STED'in 12 bir dezavantaj olarak kabul edilirAncak çift renkli STED'in piyasada bulunan çeşitli floroforlar nispeten basittir. STED iki kanal ile sınırlı iken, ek yapılar, yaklaşık 200 nm (E. Mace, yayınlanmamış gözlemler çözünürlükte konfokal görüntülü böylece bir lazer konfokal tarama mikroskobu ile STED'in entegrasyonu da STED'in ile kombinasyon halinde ilave confocal görüntüleme sağlar: .) Biz bağışıklık hücrelerini görüntülenmesi için STED'in kullanımını tarif ederken, bu teknoloji, sinir hücreleri dahil olmak üzere hücre tipleri, çeşitli hücre ve yapıların çeşitli 23-26 görselleştirme için uygulanır.

SIM subdiffraction sınırlı görüntüler oluşturmak için farklı bir yaklaşım kullanır. Bilinen periyodik uyarım desen ile görselleştirme, bilgi daha sonra, aşağıdaki matematiksel dönüşüm 27 çalışılmaktadır bilinmeyen yapısı elde edilebilir. Bu ~ 100 nm yanal 28,29 çözünürlüğe bir artış verir. SIM avantajı, bu is tüm standart konfokal boyalar ve probları ile uyumlu, ancak dezavantajı görüntüleri elde etmek için çok daha yavaş olduğunu ve bu uzun post-processing 12 ihtiyaç olmasıdır. Bu, aynı zamanda canlı hücre görüntüleme için kullanılmasını sınırlamaktadır.

Son olarak, süper çözünürlüklü görüntüler Flüoroforlann stokastik foto-anahtarlama tarafından oluşturulmuş olabilir. Bu yaklaşım, fotoğraf aktive yerelleştirme mikroskobu (PALM) ve stokastik optik rekonstrüksiyon mikroskobu (FIRTINA) istismar edilmektedir. Birden fazla kamera kare tarama ve zamanla ve "kapalı", "açık" rastgele aktif molekülleri lokalize ederek, 20-30 nm çözünürlükte görüntüler birikmiş çerçeveleri 30-32 üretilir. Bu çözünürlük için trade-off görüntüleri elde etmek için gerekli zamanı.

Burada ayrıntılı olarak göstermek, hazırlama ve STED'in çift renk örnekleri görüntüleme için protokol. Bu sistemde, atımlı bir uyarım, ayarlanabilir, beyaz ışık lazer ile. Doğası gereğidarbeli uyarma demetinin, algılama süresi yolluk mümkün kılan ve daha fazla artış çözünürlük edilir. Buna ek olarak, sistem, bu şekilde daha düşük bir lazer güç gereksinimleri için izin gadolinyum hibrid geleneksel foto-çoğaltıcı tüpler daha duyarlıdır (hyd) dedektörleri ile donatılmıştır. STED'in için tükenmesi ışın sürekli olarak tatbik edilir ve iki renk STED'in için mevcut boyaların seçimi dikte edecek 592 nm, ayarlanmıştır. Yaygın olarak kullanılan boya kombinasyonları genellikle (örneğin Alexa Fluor 488, Oregon Yeşil, yeşil DyLights veya Chromeo 488 gibi) 488 nm ile heyecanlı bir ve (örneğin Pasifik Turuncu veya Horizon V500 gibi) 458 nm ile heyecanlanan birini içerir. İki boyaların algılama benzer bir aralık içinde olacaktır (ve her ikisi de tükenme lazer tarafından erişilebilir) iken Böylece, farklı dalga boylarında uyarım ile ortaya çıkar. Bir ayarlanabilir beyaz ışık lazer ve ayarlanabilir dedektörleri ile, spektral örtüşme yok ederken sinyali maksimize oldukça kolay yapılır. Gibi, biz combinat ile iyi bir başarı olduBu tür Pacific Orange (burada kullanılan) Alexa Fluor 488 olarak ticari olarak temin edilebilen boya iyonları. Bizim protokol yönelik hazırlanmıştır ve bu bizim laboratuvar tarihsel odak temsil eder gibi insan NK hücrelerinin değerlendirilmesini açıklar. Biz düzenli olarak deneysel çalışmalar 21,33 olarak uygulamış biri olarak biz özellikle bu örnekte NK92 hücre hattını kullanıyor.

Protocol

1. Coat Coverslips with Antibody Prewarm (at 37 °C) 30 ml of RPMI 10% FCS media and 1 ml of BD Cytofix/Cytoperm. Prepare a solution of 5 μg/ml of purified antibody in phosphate buffered saline (PBS). For activation of the NK92 cell line, use of anti-CD18  and anti-NKp30 is recommended. Mark one approximately dime sized circle for each condition on a #1.5 coverslip using a PAP pen. For a dual color experiment, there should be four conditions: unstained, dual stained, and two single stained conditions. Dispense 200 µl of antibody solution in each region and incubate at 37 °C for 30 min. Wash coverslips by gently immersing each one in 50 ml of PBS in a 50 ml conical tube at room temperature. Washing should occur immediately prior to the addition of cells and care should be taken to avoid antibody drying on the coverslip. 2. Activate NK Cells on Coverslips; Fix and Permeabilize Isolate 5 x 105 NK92 cells per condition. Centrifuge and decant supernatant. Wash once with 10 ml prewarmed media from step 1.1. Centrifuge and decant supernatant. Resuspend cells in prewarmed media from step 1.1 at a concentration of 2.5 x 106/ml. Gently decant 200 µl to the center of the region created in section 1.2.1. Incubate at 37 °C for 20 min at 5% CO2. (Note: this time can be extended or decreased depending on the biological function of interest. For NK cell granule polarization, 20 min is sufficient). Following incubation of cells, gently wash coverslips by immersing each in 50 ml of room temperature PBS in a 50 ml conical tube. Add 1 µl of Triton X-100 to 1 ml of prewarmed Fix/Perm solution from step 1.1 and vortex thoroughly. Fix and permeabilize by adding 200 µl of Fix/Perm buffer (step 2.3) to cells. Incubate for 10 min in the dark at room temperature. 3. Stain Cells Prepare staining buffer: Phosphate buffered saline (PBS), 1% BSA, 0.1% Saponin. Prepare solution of primary antibody in 200 µl staining buffer (see step 3.1). (Note: antibody should be titrated prior to use). Avoid the use of primary antibody that is raised in the same species used to coat the coverslip (step 1.2). Also avoid Strepatividin-biotin linkages for STED imaging. Following section 2.3.1, gently wash coverslips in 50 ml staining buffer. Dab edges of PAP-pen region with cotton swab to remove excess buffer. Apply antibody solution created in section 3.1.1. Incubate 30 min in the dark at room temperature. (Recommended: incubate coverslips in slide box with a moist paper towel to maintain humidity). Prepare solution of secondary antibody in 200 µl staining buffer. Recommended fluorophores are Alexa Fluor 488, Pacific Orange, and V500. Generally, a 1:200 dilution is suitable for STED imaging. Gently wash coverslips in 50 ml staining buffer. Dab edges of PAP-pen region with cotton swab to remove excess buffer. Apply secondary antibody solution. Incubate 30 min in the dark at room temperature. Repeat washing and staining for additional proteins of interest. If detecting F-actin with Phalloidin, this can be included with secondary antibody, generally at a 1:200 dilution. 4. Mount Coverslips on Slides Prepare mounting medium. Note: Prolong or Prolong Gold are preferable. VECTASHIELD must be avoided, as it is not compatible with STED. 2,2-thiodioethanol must be avoided if Phalloidin is used. Mowiol is acceptable. Place approximately 10-20 µl of mounting medium on a slide. Invert coverslip (cell-side down) and mount coverslip gently, taking care to avoid introduction of air bubbles. Incubate slides for 24 hr (coverslip up) prior to imaging. Seal edges of coverslip with nail polish. 5. Experimental Setup Initiate required lasers and software. Initiate STED depletion laser at 100% power. Align STED laser, which in the case of commercial systems is often an automated procedure. Focus the sample, beginning with single stained control, on the microscope using eyepieces. 6. Optimization of Settings Scan the first channel and optimize laser power, excitation beam position and detector range. If possible, avoid a gain of >100. Capture the image in confocal to optimize settings. Line and/or frame averaging will increase resolution. Check for pixel saturation. Note: Some saturation is acceptable in confocal as application of STED will reduce the intensity of emission. For STED, an optimal pixel size will be below 30 nm however better resolution will be obtained with smaller pixel sizes. The size of the region of interest being imaged will dictate the lower limit of pixel size. Smaller pixel sizes may increase photobleaching. Apply STED depletion beam and capture image, starting with 50% depletion laser power. If an improvement in resolution is seen, more depletion laser power can be applied. At this stage, it may be necessary to adjust excitation laser power, line average, and/or gain. Apply time gating to reduce background (minimum 0.3 nsec). Adjust settings until an improvement in resolution over confocal can be seen. Resolution can be approximated by estimating full width half maximum (FWHM).  This represents the distance at the half maximal intensity of a Gaussian peak created by drawing a line profile across the structure of interest, and is a widely used method of estimating resolution. Once the first channel is satisfactory, initiate a second sequence for sequential scanning. In general, it is best to scan the longer wavelength fluorophore first. Repeat step 6.1 on second channel. Confirm lack of spectral overlap by imaging single stained controls with both scan sequences. Mild spectral overlap can be corrected using spectral un-mixing features in the software, however should be avoided wherever possible. 7. Image Acquisition Acquire images. For quantitative imaging, it is recommended to obtain at least 20 images/condition.  The exact number, however, should be defined according to the experimental question in concert with a statistical approach such as sample size calculation. Save experiment. 8. Deconvolution Open file with deconvolution software or batch processor. Check parameters for each channel using software. Confirm each channel's excitation and emission spectra, STED depletion emission, and imaging direction (up or down, if the image is 3-dimensional) in particular. Deconvolve using the deconvolution wizard. Default settings are generally adequate, however signal to noise ratio (SNTR) will vary from fluorophore to fluorophore and will need to be determined for each channel and each experiment individually.

Representative Results

Clearly, a primary goal of super-resolution imaging will be an improvement over conventional confocal microscopy. However, there are some common pitfalls that may lead to suboptimal resolution. These require that each experiment be optimized individually. In our representative experiment, we are imaging the F-actin network in an NK cell activated by antibody bound to glass. Common causes of (and corrections for) a lack of improved resolution of STED over confocal are as follows: Under-sampling (Figure 1a). This may lead to graininess and loss of pixel information, as shown by poor resolution of F-actin filaments. Increased line or frame averaging can often correct this. Bleaching and/or over-sampling (Figure 1b). This may be caused by lengthy pixel dwell time as a result of excessive line averaging. Alternatively, it may be a result of over-scanning of the image prior to acquisition, including over-use of the depletion laser. This commonly results in hazy or fuzzy images. This can be corrected by scanning the field of interest only minimally before acquiring or, if possible, increasing laser scan speed. If the problem persists, the depletion laser power can be reduced. By achieving the correct balance of pixel dwell time, excitation laser power, and depletion laser power, an image with improved resolution and sufficient information can be generated (Figure 1c). Resolution can be further improved by the use of deconvolution (Figure 1d). When acquisition is optimized, deconvolution will improve resolution both qualitatively and quantitatively and sub-100 nm resolution should be routinely attainable. Figure 1. Optimization of acquisition and common pitfalls of STED imaging. NK92 cells were activated on anti-CD18 and -NKp30 coated glass for 20 min then fixed, permeabilized and stained for F-actin with Phalloidin Alexa Fluor 488. a) An example of loss of image information due to under-sampling. b) An example of loss of resolution due to bleaching/over-sampling c) conditions optimized d) optimized conditions lead to greater improvement in resolution with deconvolution. Scale bar = 5 μm.

Discussion

The improvement in resolution over confocal will be somewhat dependent upon factors which cannot be controlled. These factors include minor aberrations in cover slip thickness and inconsistencies in mounting media. It is important to keep the temperature and humidity in the imaging room as consistent as possible, and the STED beam should be realigned approximately every 60 min. As mentioned in Procedures, use of VECTASHIELD mounting medium must be avoided, as this is not compatible with STED. In addition to which, one should always use #1.5 cover slips, and if available, use those which have been verified to a specific thickness.

One modification of the approach described here is to image additional channels in confocal, using fluorophores that emit at a longer wavelength than the STED beam. In this way, one can image up to four channels (two in confocal, two in STED). If taking this approach, however, the channels with fluorophores emitting above the STED depletion laser will need to be imaged first, as application of the STED beam will deplete photons in these channels. One advantage to this technique is the application of time gating, which will also improve resolution in confocal by eliminating emission from photons with short lifetimes34. In particular, the use of time gating, the timing of emission detectors to correspond with pulsed excitation STED, will decrease background fluorescence from reflection off coverslip glass when imaging close to it. Even in an experiment not suitable for STED, if using a pulsed excitation source, time gating can be a useful tool for improving resolution in confocal.

There are various modifications that can be utilized to improve resolution in STED. One is to decrease the size of the pinhole from the standard 1 Airy unit, although this will also decrease the amount of light reaching the sample. This can be compensated for by increasing laser power or gain. Another is to increase line average, which will increase the amount of information gathered for each photon, improving resolution. Again, however, this may be at the cost of photobleaching of the sample, so a balance will need to be struck between resolution and bleaching. Similarly, use of fluorescent proteins such as GFP will require careful optimization to avoid bleaching. This may be accomplished by decreasing STED laser power if necessary. Longer time points will also allow for greater photon recovery and reduce bleaching. Correction for photobleaching should be accounted for when analyzing live STED.

Of course, imaging in 3 dimensions in STED is also possible, and will also give an improvement over conventional confocal imaging. This is particularly true if it is done in combination with deconvolution, although care should be taken to correct for drift that occurs during imaging multiple planes in the z-axis. If using Huygens software to deconvolve, this correction is obtained using the “stabilize image” feature. Using this approach, resolution in the z-axis will be improved. This is a great improvement over conventional confocal imaging, which has poor axial resolution, and even over just STED itself, which also has relatively poor z-axis resolution. While acquiring multiple stacks in STED, care must be taken to avoid bleaching of the sample, and if necessary one can reduce line averaging or laser power intensity in order to do so. Again, it should be noted that if imaging other fluorophores that are not suitable for STED, application of the depletion beam in the first sequential scan would prevent emission from these channels. Therefore, a mixed STED/confocal approach (when using confocal scanning in channels that emit at a wavelength greater than 592 nm) will unfortunately not be suitable for 3D.

To summarize, we have chosen STED as an approach due to its relative ease of application and improvement in resolution over standard confocal imaging. For imaging the immune synapse, it has proven an effective and valuable technique that allows us to see details in F-actin architecture not possible at resolution over 200 nm. While many of these details seem subtle, they can have a profound effect on NK cell function. Thus, we are applying the latest nanoscopic imaging technology to deriving information that is critical for maintaining human health.

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Geoff Daniels for technical assistance. This work was funded by R01 AI067946 to J.S.O.

Materials

#1.5 cover slips VWR 48393-172
BD Cytofix/Cytoperm BD Biosciences 554722
Bovine serum albumin Sigma A2153
Cotton tipped applicator Fisher Scientific S450941
Falcon centrifuge tubes (50 ml) VWR 352070
Fetal calf serum (FCS) (500 mL) Atlantic Biologicals S11050
Goat anti-rabbit Pacific Orange Life Technologies P31584
Laboratory tissue wipers VWR 82003-820
Nail polish VWR 100491-940
NK-92 cells ATCC CRL-2407
Phalloidin Alexa Fluor 488 Life Technologies A12379
Phosphate buffered saline Life Technologies 14190250
Prolong anti-fade reagent Life Technologies P7481
Purified anti-CD18 Biolegend 301202
Purified anti-NKp30 Biolegend 325202
Purified anti-perforin Biolegend 308102
RPMI 1640 medium (500 mL) Life Technologies 11875-093
Saponin from Quillaja bark Sigma S4521
Super PAP pen Life Technologies 008899
Triton X-100 Electron Microscopy Sciences 22142
Material Name Company Catalogue Number Comments (optional)
Huygens deconvolution software SVI Contact company
Leica SP8 TCS STED microscope Leica Microsystems Contact company

References

  1. Stinchcombe, J. C., Bossi, G., Booth, S., Griffiths, G. M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity. 15 (5), 751-761 (2001).
  2. Grakoui, A., Bromley, S. K., Sumen, C., et al. The immunological synapse: a molecular machine controlling T cell activation. Science. 285 (5425), 221-227 (1999).
  3. Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N., Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature. 395 (6697), 82-86 (1998).
  4. Orange, J. S., Harris, K. E., Andzelm, M. M., Valter, M. M., Geha, R. S., Strominger, J. L. The mature activating natural killer cell immunologic synapse is formed in distinct stages. Proc. Natl. Acad. Sci. U.S.A. 100 (24), 14151-14156 (2003).
  5. Treanor, B., Lanigan, P. M., Kumar, S., et al. Microclusters of inhibitory killer immunoglobulin-like receptor signaling at natural killer cell immunological synapses. J. Cell Biol. 174 (1), 153-161 (2006).
  6. Abeyweera, T. P., Merino, E., Huse, M. Inhibitory signaling blocks activating receptor clustering and induces cytoskeletal retraction in natural killer cells. J. Cell Biol. 192 (4), 675-690 (2011).
  7. Beemiller, P., Jacobelli, J., Krummel, M. F. Integration of the movement of signaling microclusters with cellular motility in immunological synapses. Nat. Immunol. 13 (8), 787-795 (2012).
  8. Campi, G., Varma, R., Dustin, M. L. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J. Exp. Med. 202 (8), 1031-1036 (2005).
  9. Mossman, K. D., Campi, G., Groves, J. T., Dustin, M. L. Altered TCR signaling from geometrically repatterned immunological synapses. Science. 310 (5751), 1191-1193 (2005).
  10. Varma, R., Campi, G., Yokosuka, T., Saito, T., Dustin, M. L. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity. 25 (1), 117-127 (2006).
  11. Yokosuka, T., Sakata-Sogawa, K., Kobayashi, W., et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat. Immunol. 6 (12), 1253-1262 (2005).
  12. Toomre, D., Bewersdorf, J. A new wave of cellular imaging. Annu. Rev. Cell. Dev. Biol. 26, 285-314 (2010).
  13. Schermelleh, L., Heintzmann, R., Leonhardt, H. A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190 (2), 165-175 (2010).
  14. Huang, B., Bates, M., Zhuang, X. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993-1016 (2009).
  15. Mace, E. M., Orange, J. S. New views of the human NK cell immunological synapse: recent advances enabled by super- and high-resolution imaging techniques. Front. Immunol. 3, 421 (2012).
  16. Hell, S. W., Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19 (11), 780-782 (1994).
  17. Klar, T. A., Hell, S. W. Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24 (14), 954-956 (1999).
  18. Klar, T. A., Jakobs, S., Dyba, M., Egner, A., Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. U.S.A. 97 (15), 8206-8210 (2000).
  19. Rankin, B. R., Moneron, G., Wurm, C. A., et al. Nanoscopy in a living multicellular organism expressing GFP. Biophys. J. 100 (12), 63-65 (2011).
  20. Willig, K. I., Kellner, R. R., Medda, R., Hein, B., Jakobs, S., Hell, S. W. Nanoscale resolution in GFP-based microscopy. Nat. Methods. 3 (9), 721-723 (2006).
  21. Rak, G. D., Mace, E. M., Banerjee, P. P., Svitkina, T., Orange, J. S. Natural killer cell lytic granule secretion occurs through a pervasive actin network at the immune synapse. PLoS Biol. 9 (9), (2011).
  22. Mace, E. M., Orange, J. S. Dual channel STED nanoscopy of lytic granules on actin filaments in natural killer cells. Commun. Integr. Biol. 5 (2), 184-186 (2012).
  23. Singh, H., Lu, R., Rodriguez, P. F., et al. Visualization and quantification of cardiac mitochondrial protein clusters with STED microscopy. Mitochondrion. 12 (2), 230-236 (2012).
  24. Tonnesen, J., Nagerl UV, . Superresolution imaging for neuroscience. Exp. Neurol. 242, 33-40 (2013).
  25. Kempf, C., Staudt, T., Bingen, P., et al. Tissue multicolor STED nanoscopy of presynaptic proteins in the calyx of held. PLoS One. 8 (4), (2013).
  26. Jans, D. C., Wurm, C. A., Riedel, D., et al. STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria. Proc. Natl. Acad. Sci. U.S.A. 110 (22), 8936-8941 (2013).
  27. Gustafsson, M. G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198 (2), 82-87 (2000).
  28. Gustafsson, M. G., Shao, L., Carlton, P. M., et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination). Biophys. J. 94 (12), 4957-4970 (2008).
  29. Schermelleh, L., Carlton, P. M., Haase, S., et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science. 320 (5881), 1332-1336 (2008).
  30. Betzig, E., Patterson, G. H., Sougrat, R., et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 13 (5793), 1642-1645 (2006).
  31. Hess, S. T., Girirajan, T. P., Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91 (11), 4258-4272 (2006).
  32. Rust, M. J., Bates, M., Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy. Nat. Methods. 3 (10), 793-795 (2006).
  33. Banerjee, P. P., Pandey, R., Zheng, R., Suhoski, ., Monaco-Shawver, L., Orange, J. S. Cdc42-interacting protein-4 functionally links actin and microtubule networks at the cytolytic NK cell immunological. J. Exp. Med. 204 (10), 2305-2320 (2007).
  34. Vicidomini, G., Moneron, G., Han, K. Y., et al. Sharper low-power STED nanoscopy by time gating. Nat. Methods. 8 (7), 571-573 (2011).

Play Video

Cite This Article
Mace, E. M., Orange, J. S. Visualization of the Immunological Synapse by Dual Color Time-gated Stimulated Emission Depletion (STED) Nanoscopy. J. Vis. Exp. (85), e51100, doi:10.3791/51100 (2014).

View Video