Summary

Eine Isolierte Semi-intakt Vorbereitung der Maus Vestibuläre Sinnesepithel für Elektrophysiologie und hochauflösende Zwei-Photonen-Mikroskopie

Published: June 13, 2013
doi:

Summary

Analyse der vestibulären Haarzellen Funktion wird durch ihre Lage tief innerhalb der schwierigste Teil des Schädels, der Felsenbein kompliziert. Die meisten funktionalen Haarzellen Studien haben akut isolierten Haarzellen verwendet. Hier beschreiben wir eine semi-intakten Herstellung von Maus vestibulären Epithel für elektrophysiologische und Zwei-Photonen-Mikroskopie Studien.

Abstract

Verstehen vestibulären Haarzellen funktionieren unter normalen Bedingungen, oder wie Trauma, Krankheit und Altern stören diese Funktion ist ein wichtiger Schritt in der Entwicklung von präventiven Ansätze und / oder neue therapeutische Strategien. Allerdings haben die meisten Studien, die abnormale vestibulären Funktion nicht auf der zellulären Ebene gewesen, aber konzentrierte sich hauptsächlich auf Verhaltens-Assays Vestibularisausfall wie Ganganalysen und vestibulookulären Reflex Leistung. Während diese Arbeit wertvolle Daten über das, was passiert, wenn etwas schief geht ergeben hat, ist nur wenig Informationen über die zugrunde liegenden Ursachen der Funktionsstörung aufgelesen. Von den Studien, dass auf der zellulären und subzellulären Prozessen, die Vestibularfunktion zugrunde zu konzentrieren, haben die meisten auf akut isolierten Haarzellen, ohne ihre synaptischen Verbindungen und Unterstützung Zellumgebung verlassen. Daher ist eine große technische Herausforderung gewesen Zugriff auf die außerordentlich empfindlich vestibulären Haarzellen in einem prepTrennung, die am wenigsten gestört, physiologisch. Hier zeigen wir eine semi-intakten Präparat der Maus vestibulären Sinnesepithel, die die lokale Mikroumgebung behält einschließlich Haarzellen / primären afferenten Komplexe.

Introduction

Trotz der bedeutenden Beitrag des vestibulären Systems zu unserem täglichen Leben, bleiben ein klares Verständnis der Prozesse, die für die beobachtete Abnahme in vestibulären Funktion mit dem Alter schwer zu fassen. Ein Grund für diesen Mangel an Wissen ist, dass Rückgang der vestibulären Funktion hat fast ausschließlich erforscht mit Verhaltensstörungen Assays, einschließlich der vestibulookulären Reflex (VOR), eine genaue Anzeige der extrinsische vestibulären Funktion, sondern bietet nur begrenzten Einblick in die Veränderungen der intrinsischen Komponenten . Dies ist ein wesentliches Hindernis für unser Verständnis der vestibulären Haarzellen Funktion in Gesundheit, Krankheit oder Alterung.

Zwar gibt es viele Studien einzelner vestibulären Haarzellen wurde ein entscheidender Nachteil war die Abhängigkeit von akuten Haarzellen Zubereitungen, in denen Haarzellen und sogar Kelch afferenten Terminals aus ihrer normalen Umgebung über mechanische und / oder enzymatische Behandlung entfernt werden. Solche Ansätze zwangsBly stören das empfindliche Mikroarchitektur zwischen Haarzellen und Kelch und Haarzellen und Stützzellen. Mit der Entwicklung von semi-intakten Präparate 1-5 und einem isolierten Maus Labyrinth Zubereitung 6, gibt es jetzt eine Möglichkeit, die verschiedenen Formen der synaptischen Kommunikation unter den Bedingungen, die stärker die in vivo ähneln studieren. Tatsächlich zeigte Lim et al. (2011) deutliche Unterschiede in ganzen Zellen Ströme von akut isoliert Typ I aufgezeichnet vestibulären Haarzellen zu denen, die eingebettet in die Neuroepithel blieb verglichen. Insbesondere wird angenommen, dass Kalium in den interzellulären Raum ansammeln, zwischen den Haarzellen und Kelch afferenten und signifikant verändern Haar-Zell-Antwort 7. Diese Art von Informationen wäre unmöglich, ohne die semi-intakten Vorbereitung des vestibulären Sinnesepithel hier beschriebenen zu erhalten. Wir zeigen die semi-intakten Präparat der Maus crista 3Und zeigen repräsentative Ergebnisse von whole-cell Patch Elektrophysiologie erhalten und Zwei-Photonen-Kalzium-Imaging.

Protocol

1. Tiere Die Mäuse wurden von der australischen Nagetier Centre (ARC; Perth, Australien) gewonnen und gehalten an der Universität von Sydney Bosch Tierlabor auf einem normalen 12-Stunden Licht / Dunkel-Zyklus mit ökologischen Bereicherung. Alle beschriebenen Experimente wurden von der University of Sydney Tier Ethikkommission genehmigt. Männliche und weibliche Mäuse (C57/Bl6) wurden für alle Experimente verwendet werden, da dieser Stamm häufig als Hintergrund für genetische Manipulation verw…

Representative Results

Die elektrophysiologischen Eigenschaften des vestibulären Haarzellen sind abhängig von der komplexen microarchitecture 7, in dem sie eingebettet sind. 5 zeigt, dass die semi-intakten Epithel vestibulären Herstellung verwendet werden, um zwischen Typs unterschieden werden können I Haarzellen (5A), Typ II Haarzellen (5B), und der Kelch primären afferenten (5C) auf der Grundlage charakteristische Ganzzell Leitwerte. Diese Merkmale beinhalte…

Discussion

Die zugrunde liegenden Mechanismen unseren Gleichgewichtssinn haben begrenzte Aufmerksamkeit im Vergleich mit anderen sensorischen Systemen erhalten, z. B. die visuelle und auditive Systeme. Von den Studien, die Veränderungen in der vestibulären oder Balance-Funktion untersucht haben, haben die meisten auf verhaltensorientierten Maßnahmen einschließlich der vestibulookulären Reflex konzentriert, mit unvollständigen Kenntnis der fundamentalen Bausteine ​​der Balance-den vestibulären Haarzellen sich. D…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Die Finanzierung dieser Arbeit wurde durch einen Garnett Passe und Rodney Williams Memorial Foundation Projektstipendium R. Lim und AJ Camp zur Verfügung gestellt.

Materials

REAGENTS
Leibovitz medium L-15 Sigma Aldrich L4386-10X1L
BAPTA-1-oregon green Invitrogen O6806
EQUIPMENT
Stereo microscope Leica Microsystems A60S
Upright microscope Olympus BX51WI
Two-photon microscope Olympus/La Vision BX51WI/ TriMScope II
Dumont #5 SF Forceps FST 11252-00
Friedman-Pearson Rongeurs FST 16221-14
Standard Pattern Scissors FST 14001-12
InstraTECH A-D converter HEKA ITC-18
Sutter Micromanipulator Sutter MP-225/M
multiclamp amplifier Axon Instruments 700B
Data acquisition software (electrophysiology) Axograph N/A
Imspector Data acquisition software (two-photon) Max Planck innovation N/A

References

  1. Dulon, D., Safieddine, S., Jones, S. M., Petit, C. Otoferlin is critical for a highly sensitive and linear calcium-dependent exocytosis at vestibular hair cell ribbon synapses. J. Neurosci. 29, 10474-10487 (2009).
  2. Highstein, S., Art, J., Holstein, G., Rabbitt, R. Simultaneous pre- and post-synaptic recording from the peripheral vestibular calyx and its included type I hair cell. , (2009).
  3. Kindig, A. E., Lim, R., Callister, R. J., Brichta, A. M. Voltage dependent currents in type I and II hair cell and calyx terminals of primary afferents in an intact in vitro mouse vestibular crista preparation. , (2009).
  4. Chatlani, S., Goldberg, J. M. Whole-cell recordings from calyx endings in the turtle posterior crista. , (2010).
  5. Songer, J. E., Eatock, R. A. Transduction in the mammalian saccule. , (2010).
  6. Lee, H. Y., Camp, A. J., Callister, R. J., Brichta, A. M. Vestibular primary afferent activity in an in vitro preparation of the mouse inner ear. J. Neurosci. Methods. 145, 73-87 (2005).
  7. Lim, R., Kindig, A. E., Donne, S. W., Callister, R. J., Brichta, A. M. Potassium accumulation between type I hair cells and calyx terminals in mouse crista. Exp. Brain Res. 210, 607-621 (2011).
  8. Camp, A. J., Callister, R. J., Brichta, A. M. Inhibitory synaptic transmission differs in mouse type A and B medial vestibular nucleus neurons in vitro. J. Neurophysiol. 95, 3208-3218 (2006).
  9. Camp, A. J., et al. Attenuated glycine receptor function reduces excitability of mouse medial vestibular nucleus neurons. Neuroscience. 170, 348-360 (2010).
  10. Briggman, K. L., Euler, T. Bulk electroporation and population calcium imaging in the adult mammalian retina. J. Neurophysiol. 105, 2601-2609 (2011).
  11. Briggman, K. L., Helmstaedter, M., Denk, W. Wiring specificity in the direction-selectivity circuit of the retina. Nature. 471, 183-188 (2011).
  12. Rennie, K. J., Streeter, M. A. Voltage-dependent currents in isolated vestibular afferent calyx terminals. J. Neurophysiol. 95, 26-32 (2006).
  13. Hudspeth, A. J., Lewis, R. S. Kinetic analysis of voltage- and ion-dependent conductances in saccular hair cells of the bull-frog, Rana catesbeiana. J. Physiol. 400, 237-274 (1988).
  14. Rennie, K. J., Ashmore, J. F. Ionic currents in isolated vestibular hair cells from the guinea-pig crista ampullaris. Hear. Res. 51, 279-291 (1991).

Play Video

Cite This Article
Tung, V. W. K., Di Marco, S., Lim, R., Brichta, A. M., Camp, A. J. An Isolated Semi-intact Preparation of the Mouse Vestibular Sensory Epithelium for Electrophysiology and High-resolution Two-photon Microscopy. J. Vis. Exp. (76), e50471, doi:10.3791/50471 (2013).

View Video