我々は内膜破裂を追跡するための方法を説明することは細胞内細菌によって誘発<em>赤痢菌<em></em</em>と<em<em><em>結核菌</em></em</em宿主細胞侵入時>。我々のアッセイはCCF4を利用し、細胞質のホストは、ライブまたは固定細胞におけるFRETプローブ。この記者は、細菌表面上の酵素活性が存在することによって分解される。
赤痢菌は、エンドサイトーシスの液胞に入る宿主細胞に侵入する病原性細菌である。次に、この膜に囲まれた区画の破裂は、細菌が細胞質内で移動することができ増殖し、さらに隣接セルに侵入。 結核菌が免疫細胞によって貪食されており、最近ではマクロファージにおける破断ファゴソーム膜に示されている。私たちは、 赤痢菌や結核菌の宿主細胞侵入後ファゴソーム膜破壊を追跡するための堅牢なアッセイを開発しました。アプローチはCCF4を利用する、宿主細胞の細胞質ゾルで平衡化β-ラクタマーゼに対して感受性レポーターのFRET。細菌が膜で囲まれた区画内に存在するように細菌の病原体による宿主細胞への侵入の際、プローブは限りそのまま残ります。細胞内の病原体を切断CCF4の表面上の液胞、β-ラクタマーゼ活性を破壊した後瞬時につながるFRETシグナルの損失をると、その発光スペクトルを切り替える。この強固なレシオメトリックアッセイは侵入した細菌により誘発される液胞破裂のタイミングについての正確な情報が得られ、それはの発光シグナルの検出に特化したアルゴリズムによって、自動顕微鏡及び画像処理に結合することができるドナーとアクセプターのFRET。さらに、単一細胞内のリアルタイムで細胞内細菌によって誘発される液胞分裂のダイナミクスを調査できます。最後に、完全に従来の方法を越える時空間分解能で高スループット分析に適している。ここでは、HeLa細胞と赤痢菌ならびに結核marinum、ウシ型結核菌、などの複数のマイコバクテリアの菌株を用いたタイムラプス実験やエンドポイントの実験のためのTHP-1マクロファージCCF4液胞の破裂アッセイのための代表的なプロトコルの実験の詳細を提供しますと結核 。
多数の細菌性病原体は、感染の過程で彼らの真核細胞の膜に囲まれた区画内に内在化されています。セルエントリは、マクロファージによって摂取、または病原体を積極的に典型的には非食細胞へのそれらの取り込みを誘導している結核菌の場合のように、特殊な宿主細胞による貪食のいずれかを介して起こる。誘発摂取の場合には、 赤痢菌のために例えば、病原体は、他の細胞機能エンドソーム区画1,2内細菌の局在が生じる厳しく規制内膜選別機械の中でハイジャック宿主細胞質ゾルにエフェクタータンパク質を注入。その後、 赤痢菌は液胞破裂とホスト膜輸送とリソソームへの回避の配信を妨害する病原体の細胞質へのアクセスにつながる囲む膜を破壊する。より最近では、ファゴリソソーム破裂も感染列strとして見出されているategy 結核 、もっぱら膜結合コンパートメント3,17内に局在するのに長い時間のために考えられていた病原体によって使用される。
侵襲性病原体の細胞内膜輸送の動態を調査するために、大きな改善は4,5 1980年代後半の研究をもとに、透過型電子顕微鏡(TEM)以降に達成された。例えば、染料を使用して蛍光顕微鏡ベースの方法は、細菌表面のコンポーネント、または細胞内コンパートメントとの共局在のマーカーに対する抗体は、6,7を引き継いだ。しかし、彼らはまだ正確な時空間分解能と定量的に細菌の病原体によって液胞破裂を測定するための堅牢性を得られない。
このハードルは、最初の遺伝子発現8を研究するために使用されたセファロスポFRET CCF4-AM派生リポーターに基づくアッセイで対処されています。そして、infファイルのコンテキストで使用されたECTION生物学、エフェクター分泌を調査すると、宿主細胞9,10,11にナイセリアの取り込みに従うこと。私たちは、 赤痢菌 12と結核菌 17によって誘発される液胞破裂を研究するため、この記者を利用してアッセイを開発しました。本手法の原理は、 赤痢菌を用いて、図1に記載されている。まず、宿主細胞はAMエステル部分を開裂した後に細胞質内に閉じ込められているFRET CCF4-AM基板がロードされる。その後、細胞は赤痢菌に感染している。細菌の表面上のβ-ラクタマーゼ存在裂CCF4基質液胞破裂が発生するとすぐにすることができます。これは、405nmでの励起時にプローブ450 nmの535nmでの発光ピークを切り替えFRETシグナルの損失につながる。 535分の450 nmの強度のレシオメトリック測定は、液胞の整合性を強調:低比率は、膜·アン反映高い比率一方クローズドまたは細胞外細菌はバクテリアとホスト細胞質との間の接触を反映しています。また、THP-1マクロファージにおける結核菌によって誘導されるファゴソーム破裂を研究するため、この方法の適応を報告する。実験的な原則は、順序が逆転しているが、CCF4-AMローディングが細菌感染した後にのみ適用されるものと同じまま。
したがって、単一細胞レベルでの定量的なレシオメトリック蛍光測定によって、 赤痢菌液胞の破裂は、異なる細胞型12,13,14から、即座に、固定試料における追跡することができる。さらに、この方法は、 ウシ型結核菌および結核菌を使用して、この研究で示すように、他の侵襲性病原体の数に適合させることができる。最後に、96ウェル(または384ウェル)に我々のプロトコルフォーマットの小型化、高スループットで、多数の条件のスクリーニングを可能にします。
CCF4-AM/β-lactamaseアッセイは、細胞内の赤痢菌と異なる種類の細胞におけるマイコバクテリアによって誘発される液胞分裂を追跡する簡単な方法です。それはラクタマーゼ敏感細胞質は、細菌の表面に活性酵素によって切断されている記者のFRETを利用しています。
CCF4-AM基板の損失は簡単に基板からロードした後、すべてのソリューションにプロベネシドを追加することで回避することができます。示したように、アッセイは、複数の細胞型(上皮細胞、食細胞)およびフォーマット(96ウェル、35ミリガラスボトムディッシュ、6/12/24ウェルプレート)に適合させることができる。 6/12/24ウェルプレートの使用については、無菌カバースリップ細胞を播種する前に、各ウェルの底部に分布している。実験の最後に、カバースリップを金退色防止試薬(Invitrogen)を延長するなど、実装媒体にスライド上に転写される。この方法では、信号は、アッセイの後、より長い時間にわたって安定である試料は固定後、PBSに保存されている96個のウェルフォーマットに比べて。 CCF4-AM基板の高コストは、試料の体積を決定する前に考慮されるべきである。我々は彼らをスケールダウンをお勧めする理由です。実験では、6/12/24ウェルフォーマットで、より高価ですが、信号が日間安定です。逆に、実験は、96ウェルフォーマットで安価であるが、サンプルは実験日で分析されなければならない。それはライブの実験はまた、96ウェルまたは384ウェルフォーマットで行うことができることは注目に値する。これは、ウェルあたりのポジションの番号を同時に(変異体細菌、MOI、プラスミド又はsiRNAトランスフェクション、化学薬品など)で条件の多数を使用してライブの実験を行うことができます。 赤痢菌に適していますが、私たちは感染サイクルは、細胞質内に保持することができますCCF4の測定可能な濃度を超えているので、 "true"をリアルタイムまたはタイムラプス実験がマイコバクテリアの研究のために実現不可能であることを強調する。のためにこの理由は、CCF4-AM基板を浸潤が達成された後にのみ、セルに適用される。
変形者ソフトウェアを取得し、分析のために使用されているケースでは、我々はよく当たりの画像の指定した数で全体の384分の96ウェルプレートを取得することができるモジュール "画面取得"を使用することをお勧めします。さらに、モジュールの "確認画面データは、"(i)が大きな "ポスター"で同時に任意のチャンネルのためによく、それぞれのステッチ画像モザイクを可視化すると、(ii)535の強度を測定するための特殊なアルゴリズムをループ可能にし、 450 nmのチャネル。にもかかわらず、我々はタイムラプス顕微鏡を使用して単一の細菌によって液胞破裂を測定することができました、我々は個々の細菌の表面の酵素活性は、それが困難な細胞内細菌と液胞の有効数を正確に相関させるためにレンダリング変化することを注意したいと思います破裂。
アッセイの堅牢性を考えると、それは、hに適していますIGHのスループットは、96または384ウェルフォーマットで近づく。また、成功したサスペンション16の細胞の感染を調べるためにFACS分析のためにこのプロトコルを適応している。アッセイはまた、広範囲のアプリケーションにつながる、その表面にラクタマーゼを提示する他の細菌又はキャリアの調査のために使用することができる。例えば、このアプローチは、例えば、β-ラクタマーゼを発現するレジオネラ菌 、 リステリア菌又はネズミチフス菌 12などの他の病原体により誘発される液胞破裂を研究するために使用することができる。 リステリア菌は、赤痢菌感染に匹敵短い周期を有するので、時間経過実験が可能である。これとは対照的に、ためレジオネラ·ニューモフィラとネズミチフス菌ディスプレイ長い感染サイクルは、我々は、エンドポイントの実験を行うことをお勧めします。
可能な様々なアプリケーションがCCF4-AM/β-lactamaseアッセイ作る固定したサンプル中またはリアルタイムに細胞内病原体によって誘発される液胞破裂を追跡するための興味深い蛍光法。
The authors have nothing to disclose.
この作品は、通信社国立注ぎラルシェルシュによっておよび欧州研究評議会によって資金を供給された。
Name of the reagent | Company | Catalogue number | Comments (optional) |
LiveBlazer FRET-B/G Loading Kit (CCF4-AM) | Invitrogen | K1089 | Protect from light, stock in – 80 ° aliquots |
Draq5 | Biostatus | DR50050 | |
Poly-L-lysine | Sigma | P9155 | |
μCLEAR-PLATE, BLACK, 96 well | Greiner Bio-One | 655090 | |
35 mm glass bottom dishes | MatTek corp. | P35G-1.5-10-C | |
Probenecid | Sigma | P8761 | |
β-lactamase | Sigma | P0389 |