用荧光染料标记细胞在预定的新皮层的功能性微域的一种方法。首先,本征信号光学成像用来获得一个功能图。双光子显微镜被用于标签和图像的神经元内微域的地图。
在非啮齿类哺乳动物初级视觉皮层的神经元聚集根据自己的喜好刺激的功能,如方向1-4,5-7方向,眼优势8,9和双眼视差9。方位选择性是最被广泛研究的功能,并具有准周期的布局为择优取向的连续映射在整个初级视觉皮层10,11是本。整合的突触,手机和网络的贡献,在这些功能的地图,以的刺激选择性的反应,需要杂交成像技术,跨越亚微米到毫米的空间尺度。与传统的内源信号光学成像,整体布局功能地图的整个表面上的视觉皮层可确定12。 在体内双光子显微镜使用钙敏感染料的发展使一个确定SYNAPT到达13或记录个人的树突棘IC输入端的活动,同时从数以百计的单个神经元细胞体6,14。因此,结合特性的信号与亚微米的空间分辨率的双光子显微镜成像提供准确地确定树突状段和细胞有助于在新皮质的任何功能的地图的微域的可能性。在这里,我们展示了一个高收益的方法快速获得皮质的方向图,针对一个特定的微域在这个功能的地图,用荧光染料标记细胞在非啮齿类哺乳动物。用于双光子成像具有相同的显微镜中,我们首先生成一个定向地图使用固有的信号的光学成像。然后,我们如何定位的利益,用微装有染料为标签的微域人口的神经元细胞体或标签的单个神经元的树突棘和轴突中是可见的体内。我们比以前的方法的改进,促进神经元的结构与功能的关系与亚细胞分辨率的新皮层的功能体系结构的框架中的一个考试。
我们提出一个方法来定位标签在预先确定的功能性微域的新皮层的神经元细胞体(或树突和轴突)。合并内在信号光学成像与双光子显微镜提供的可能性确定哪些突触和细胞有助于微域的任何功能的地图,是否选择性神经元的神经元中的功能图的位置,以及神经元电路相关组件这种变化的视觉体验7或应用临床治疗的药物18。
据报道,在视觉皮层的成年野生型?…
The authors have nothing to disclose.
这项工作是支持的国家眼科研究所R01EY017925和R21EY020985的资金从达纳白厅基础PK我们也感谢马修·彼得雷拉外科手术的帮助,格雷斯·迪翁示于图5A追踪树突补助; PRATIK Chhatbar为的手稿上的意见。
Name of Reagent/Material | Company | Catalogue Number | Comments | ||||||
1. Life support/experiment prep | |||||||||
Isoflurane | Webster Vet | NDC 57319-474-05 | |||||||
Isoflurane vaporizer | Midmark | VIP 3000 | |||||||
Feedback regulated heating blanket | Harvard Apparatus | 50-7079F | |||||||
ECG monitor | Digicare Biomedical | LifeWindow Lite | |||||||
EEG amplifier | A-M Systems | 1800 | |||||||
EEG display monitor | Hewlett Packard | 78304A | |||||||
End tidal CO2 monitor | Respironics | Novametrix Capnoguard 1265 | Optimize ventilation | ||||||
Carbide drill burrs for drilling bone | Henry Schein | fine (0.5 mm tip) and coarse (1.25 mm tip) | |||||||
Cement for headplate/chamber | Dentsply | 675571, 675572 | |||||||
Black Powder Tempera Paint | Sargent Art Inc. | 22-7185 | Add to cement to improve light shielding and reduce reflections | ||||||
Agarose – Type III-A | Sigma | A9793 | For minimizing pulsations during intrinsic signal and two-photon imaging | ||||||
Coverglass: 5 or 8 mm diameter, 0.17 mm thickness | World Precision Instruments | 502040, 502041 | For minimizing pulsations during imaging, the coverglass may be cut as needed | ||||||
Brudon curettes | George Tiemann | 105-715-0, 105-715-3 | Cleaning skull surface | ||||||
Bone wax | Ethicon | W31G | Quickly stop bleeding | ||||||
Cotton Tipped Applicator | Electron Microscopy Sciences | 72308-05 | Clean and dry bone surface | ||||||
Dumont #5CO Forceps | Fine Science Tools | 11295-20 | Grab individual layers of dura or pia | ||||||
Vannas Spring Scissors | Fine Science Tools | 15000-03 | Cut dura | ||||||
Gelfoam | Pfizer | 09-0396-05 | To stop bleeding on the dura | ||||||
Absorption spears | Fine Science Tools | 18105-01 | Ultra-fast and lint-free wicking of CSF | ||||||
Blackout material | Thorlabs | BK5 | Shield craniotomy | ||||||
2. Dye preparation / injection | |||||||||
Dimethyl Sulphoxide (DMSO) | Sigma | D2650 | |||||||
Pluronic | Sigma | P2443 | |||||||
Oregon Green 488 Bapta-1 AM | Invitrogen | O6807 | Calcium indicator | ||||||
Alexa Fluor 594 | Invitrogen | A10438 | |||||||
Centrifugal filter (0.45 μm pore size) | Millipore | UFC30HV00 | To remove impurities before injection | ||||||
Glass pipette puller | Sutter Instruments | P97 | |||||||
Borosilicate glass filamented capillary (1.5 mm outer diameter) | World Precision Instruments | 1B150F-4 | Dye ejection pipette | ||||||
Microloader | Eppendorf | 5242 956 003 | For loading dye into pipette | ||||||
Micromanipulator | Sutter Instruments | MP-285 | To position pipette | ||||||
Pressure pulse controller | Parker Hannifin | PicoSpritzer III | For pressure injection of the dye | ||||||
Single-cell electroporator | Molecular Devices | Axoporator 800A | For electroporation of the dye | ||||||
3. Intrinsic imaging | |||||||||
4x Objective (0.13 NA, 17 mm WD) | Olympus | UPLFLN4X | |||||||
Intrinsic hardware / software | Optical Imaging Inc. | Imager 3001 / VDAQ | VDAQ software is used for episodic imaging | ||||||
CCD Camera | Adimec | Adimec-1000 | |||||||
Light source power supply | KEPCO | ATE 15-15M | |||||||
Light source | Optical Imaging Inc. | HAL 100 | Light intensity at the cortical surface is 3-5 mW | ||||||
Green filter (for vascular image) | Optical Imaging Inc. | λ = 546 nm (bandpass 30 nm) | For reference image of surface vasculature | ||||||
Red filter (for intrinsic signal) | Optical Imaging Inc. | λ = 630 nm (bandpass 30 nm) | To collect intrinsic signals | ||||||
Heat filter | Optical Imaging Inc. | KG-1 | |||||||
4. Two-photon rig/imaging | |||||||||
Two-photon microscope and software | Prairie Technologies | See Shen et al. 2012 for light path, filters and laser power | |||||||
Ti:Sapphire laser | Spectra-Physics | Mai Tai XF | |||||||
20x (0.5 NA; 3.5 mm WD) | Olympus | UMPLFLN20X | 0.5 NA objective is used only for aligning pipette over the craniotomy (not for two photon imaging) | ||||||
20x (1.0 NA; 2.0 mm WD) | Olympus | XLUMPLFLN20X | |||||||
40x (0.8 NA; 3.3 mm WD) | Olympus | LUMPLFLN40X/IR | |||||||
Air table | Newport | ST-200 | Isolates preparation from external vibrations | ||||||
xy stage | Mike’s Machine Co. (Attleboro, MA) | Experimental subject and Sutter micromanipulator placed on xy stage | |||||||
|