Summary

Одновременное электроэнцефалография, в режиме реального времени измерения концентрации лактата и Optogenetic Манипуляция активности нейронов в коры головного мозга грызунов

Published: December 19, 2012
doi:

Summary

Процедура описана для управления деятельностью коры головного мозга пирамидальных нейронов optogenetically в то время как электроэнцефалограммы, электромиограммы, и церебральной концентрации лактата контролируется. Экспериментальные записи выполняются на кабельно-привязанный мышей, когда они подвергаются спонтанному сон / бодрствование циклы. Optogenetic сборки оборудования в нашей лаборатории; записывающее оборудование является коммерчески доступным.

Abstract

Although the brain represents less than 5% of the body by mass, it utilizes approximately one quarter of the glucose used by the body at rest1. The function of non rapid eye movement sleep (NREMS), the largest portion of sleep by time, is uncertain. However, one salient feature of NREMS is a significant reduction in the rate of cerebral glucose utilization relative to wakefulness2-4. This and other findings have led to the widely held belief that sleep serves a function related to cerebral metabolism. Yet, the mechanisms underlying the reduction in cerebral glucose metabolism during NREMS remain to be elucidated.

One phenomenon associated with NREMS that might impact cerebral metabolic rate is the occurrence of slow waves, oscillations at frequencies less than 4 Hz, in the electroencephalogram5,6. These slow waves detected at the level of the skull or cerebral cortical surface reflect the oscillations of underlying neurons between a depolarized/up state and a hyperpolarized/down state7. During the down state, cells do not undergo action potentials for intervals of up to several hundred milliseconds. Restoration of ionic concentration gradients subsequent to action potentials represents a significant metabolic load on the cell8; absence of action potentials during down states associated with NREMS may contribute to reduced metabolism relative to wake.

Two technical challenges had to be addressed in order for this hypothetical relationship to be tested. First, it was necessary to measure cerebral glycolytic metabolism with a temporal resolution reflective of the dynamics of the cerebral EEG (that is, over seconds rather than minutes). To do so, we measured the concentration of lactate, the product of aerobic glycolysis, and therefore a readout of the rate of glucose metabolism in the brains of mice. Lactate was measured using a lactate oxidase based real time sensor embedded in the frontal cortex. The sensing mechanism consists of a platinum-iridium electrode surrounded by a layer of lactate oxidase molecules. Metabolism of lactate by lactate oxidase produces hydrogen peroxide, which produces a current in the platinum-iridium electrode. So a ramping up of cerebral glycolysis provides an increase in the concentration of substrate for lactate oxidase, which then is reflected in increased current at the sensing electrode. It was additionally necessary to measure these variables while manipulating the excitability of the cerebral cortex, in order to isolate this variable from other facets of NREMS.

We devised an experimental system for simultaneous measurement of neuronal activity via the elecetroencephalogram, measurement of glycolytic flux via a lactate biosensor, and manipulation of cerebral cortical neuronal activity via optogenetic activation of pyramidal neurons. We have utilized this system to document the relationship between sleep-related electroencephalographic waveforms and the moment-to-moment dynamics of lactate concentration in the cerebral cortex. The protocol may be useful for any individual interested in studying, in freely behaving rodents, the relationship between neuronal activity measured at the electroencephalographic level and cellular energetics within the brain.

Protocol

1. Хирургическая подготовка животных 1. Испытуемых Используйте мышей B6.Cg-Tg (Thy1-COP4/eYFP) 18Gfng / J трансгенной линии 9; JAX штамм # 7612) или других мышей, экспрессирующих синие светочувствительных катионов канал, Channelrhodopsin-2, в коры головного мозга нейроны. Применени…

Representative Results

Как показано на рисунке 2, мышь оборудована для optogenetic стимуляции и лактат / ЭЭГ / ЭМГ сбора данных прошли спонтанные сон / бодрствование переходов государства, а ЭЭГ, ЭМГ и церебральной концентрации лактата контролируется постоянно. Ток при лактата датчик увеличил…

Discussion

Методы, представленные здесь, позволяют измерять отношения между сном и изменения в головном мозге концентрация лактата гликолитических промежуточные на шкале времени не было возможно ранее. Животные проходят спонтанные переходы между следа, NREMS и REMS. Кроме того, мы в состоянии примен…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Исследования, финансируемого Министерством обороны (Defense Advanced Research Projects Agency, премия для молодых факультет, номер гранта N66001-09-1-2117) и NINDS (R15NS070734).

Materials

Component Company Catalogue number Comments (optional)
BASi Mouse Guide Cannula Pinnacle Technology/BASi Inc 7032  
Lactate Biosensor Pinnacle Technology 7004  
Head Mount Pinnacle Technology 8402  
Sleep/Biosensor Recording system Pinnacle Technology 8400-K1-SL 2 EEG channels, 1 EMG channel, & 1 biosensor
Tethered Mouse in-vitro Calibration kit Pinnacle Technology 7000-K1-T  
Fiber Optic Guide Cannula Plastics One C312G 21 Gauge Guide Cannula
Dummy Cannula Plastics One C312DC 21 Gauge Dummy
Diamond Fiber Scribe Thorlabs S90W  
Fiber Connector Crimp Tool Thorlabs CT042  
Furcation Tubing Thorlabs FT030 03.0 mm
  Thorlabs T10S13 Max Dia. 0.012
Furcation Tube Stripper Thorlabs FTS3  
Bare Hard Cladding Multimode Fiber Thorlabs BFL37-200 200 μm Core, 0.37 NA
Wire Snips/Kevlar Shears Thorlabs T865  
Fiber Optic Epoxy Thorlabs F112  
Fiber Stripper Tool Thorlabs    
Glass Polishing Plate Thorlabs CTG913  
Rubber Polishing Pad Thorlabs NRS913  
Eye Loupe Thorlabs JEL10  
Kim Wipes Thorlabs KW32  
Compressed Air Thorlabs CA3  
Polishing Puck Thorlabs D50-xx  
Fiber Inspection scope Thorlabs CL-200  
Polishing Films Thorlabs LFG5P, LFG3P, LFG1P, LFG03P  
FC/PC connector end Thorlabs 30126G2-240 240 μm Bore, SS Ferrule
MC Stimulus Unit Multi-Channel Systems STG-4002  
MC Stimulus Software Multi-Channel Systems MC-Stimulus V 2.1.5  
Blue Laser CrystaLaser CL473-050-0  
Laser Power supply CrystaLaser CL2005  
Fiber Optic Rotary Joint Doric Lenses FRJ-v4  
      Table 2. Supplies and equipment.

References

  1. Magistretti, P., Zigmond, M. J., Bloom, F. E., Landis, S. C., Roberts, J. L., Squire, L. R. Brain Energy Metabolism. Fundamental Neuroscience. , 389-413 (1999).
  2. Maquet, P., et al. Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]2-fluoro-2-deoxy-D-glucose method. Brain Res. 513 (1), 136-143 (1990).
  3. Buchsbaum, M. S., et al. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography. Life Sci. 45 (15), 1349-1356 (1989).
  4. Kennedy, C. Local cerebral glucose utilization in non-rapid eye movement sleep. Nature. 297 (5864), 325-327 (1982).
  5. Pappenheimer, J. R., Koski, G., Fencl, V., Karnovsky, M. L., Krueger, J. Extraction of sleep-promoting factor S from cerebrospinal fluid and from brains of sleep-deprived animals. J. Neurophysiol. 38 (6), 1299-1311 (1975).
  6. Borbely, A. A., Achermann, P., Kryger, M. H., Roth, T., Dement, W. C. Sleep homeostasis and models of sleep regulation. Principles and Practice of Sleep Medicine. , 377-390 (2004).
  7. Destexhe, A., Contreras, D., Steriade, M. Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J. Neurosci. 19 (11), 4595-4608 (1999).
  8. Astrup, J., Sorensen, P. M., Sorensen, H. R. Oxygen and glucose consumption related to Na+-K+ transport in canine brain. Stroke. 12 (6), 726-730 (1981).
  9. Arenkiel, B. R., et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron. 54 (2), 205-218 (2007).
  10. Mateo, C. In Vivo Optogenetic Stimulation of Neocortical Excitatory Neurons Drives Brain-State-Dependent. Curr. Biol. , (2011).
  11. Wisor, J. P., Clegern, W. C. Quantification of short-term slow wave sleep homeostasis and its disruption by minocycline in the laboratory mouse. Neurosci. Lett. 490 (3), 165-169 (2011).
  12. El Yacoubi, M., et al. Behavioral, neurochemical, and electrophysiological characterization of a genetic mouse model of depression. Proc. Natl. Acad. Sci. U.S.A. 100 (10), 6227-6232 (2003).
  13. Tsunematsu, T., et al. Acute optogenetic silencing of orexin/hypocretin neurons induces slow-wave sleep in mice. J. Neurosci. 31 (29), 10529-10539 (2011).
  14. Le, S., Gruner, J. A., Mathiasen, J. R., Marino, M. J., Schaffhauser, H. Correlation between ex vivo receptor occupancy and wake-promoting activity of selective H3 receptor antagonists. J. Pharmacol. Exp. Ther. 325 (3), 902-909 (2008).
  15. Burmeister, J. J., Palmer, M., Gerhardt, G. A. L-lactate measures in brain tissue with ceramic-based multisite microelectrodes. Biosens. Bioelectron. 20 (9), 1772-1779 (2005).
  16. Cardin, J. A. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat. Protoc. 5 (2), 247-254 (2010).
  17. Destexhe, A., Contreras, D., Steriade, M. Cortically-induced coherence of a thalamic-generated oscillation. Neuroscience. 92 (2), 427-443 (1999).
  18. Liu, Z. W., Faraguna, U., Cirelli, C., Tononi, G., Gao, X. B. Direct evidence for wake-related increases and sleep-related decreases in synaptic strength in rodent cortex. J. Neurosci. 30 (25), 8671-8675 (2010).
  19. Iwai, Y., Honda, S., Ozeki, H., Hashimoto, M., Hirase, H. A simple head-mountable LED device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci. Res. 70 (1), 124-127 (2011).

Play Video

Cite This Article
Clegern, W. C., Moore, M. E., Schmidt, M. A., Wisor, J. Simultaneous Electroencephalography, Real-time Measurement of Lactate Concentration and Optogenetic Manipulation of Neuronal Activity in the Rodent Cerebral Cortex. J. Vis. Exp. (70), e4328, doi:10.3791/4328 (2012).

View Video