Generating induced pluripotent stem cell (iPSC) lines produces lines of differing developmental potential even when they pass standard tests for pluripotency. Here we describe a protocol to produce mice derived entirely from iPSCs, which defines the iPSC lines as possessing full pluripotency1.
The production of induced pluripotent stem cells (iPSCs) from somatic cells provides a means to create valuable tools for basic research and may also produce a source of patient-matched cells for regenerative therapies. iPSCs may be generated using multiple protocols and derived from multiple cell sources. Once generated, iPSCs are tested using a variety of assays including immunostaining for pluripotency markers, generation of three germ layers in embryoid bodies and teratomas, comparisons of gene expression with embryonic stem cells (ESCs) and production of chimeric mice with or without germline contribution2. Importantly, iPSC lines that pass these tests still vary in their capacity to produce different differentiated cell types2. This has made it difficult to establish which iPSC derivation protocols, donor cell sources or selection methods are most useful for different applications.
The most stringent test of whether a stem cell line has sufficient developmental potential to generate all tissues required for survival of an organism (termed full pluripotency) is tetraploid embryo complementation (TEC)3-5. Technically, TEC involves electrofusion of two-cell embryos to generate tetraploid (4n) one-cell embryos that can be cultured in vitro to the blastocyst stage6. Diploid (2n) pluripotent stem cells (e.g. ESCs or iPSCs) are then injected into the blastocoel cavity of the tetraploid blastocyst and transferred to a recipient female for gestation (see Figure 1). The tetraploid component of the complemented embryo contributes almost exclusively to the extraembryonic tissues (placenta, yolk sac), whereas the diploid cells constitute the embryo proper, resulting in a fetus derived entirely from the injected stem cell line.
Recently, we reported the derivation of iPSC lines that reproducibly generate adult mice via TEC1. These iPSC lines give rise to viable pups with efficiencies of 5-13%, which is comparable to ESCs3,4,7 and higher than that reported for most other iPSC lines8-12. These reports show that direct reprogramming can produce fully pluripotent iPSCs that match ESCs in their developmental potential and efficiency of generating pups in TEC tests. At present, it is not clear what distinguishes between fully pluripotent iPSCs and less potent lines13-15. Nor is it clear which reprogramming methods will produce these lines with the highest efficiency. Here we describe one method that produces fully pluripotent iPSCs and “all- iPSC” mice, which may be helpful for investigators wishing to compare the pluripotency of iPSC lines or establish the equivalence of different reprogramming methods.
This method was used in the research reported in Boland et al. Nature. 461, 91-96 (2009).1
1. Preparation of Lentivirus
This protocol employs doxycycline-inducible lentiviral shuttle vectors that encode for Oct4, Sox2, Klf4, and c-Myc under control of a tetO response element. Transgenes are activated by the reverse tetracycline trans-activating protein, rtTAM2.216, which induces reprogramming factor expression in the presence of doxycycline. This system allows for tightly controlled, high expression of reprogramming factors. The lentiviral vectors used here are self-inactivating and thus cannot replicate following genomic integration. However, caution is required when working with lentiviruses and should be performed in laboratories compliant with BSL2 (USA) and S2 (Europe) standards.
2. Preparation of Mouse Embryonic Fibroblasts (MEF) for Reprogramming
Note: The protocol outlined here relates to the derivation of iPSCs from E 13.5 mouse embryonic fibroblasts for use in TEC assays. While other groups have generated all-iPSC mice from adult donor cell sources, we have not tested this method on other cell types and cannot be certain that donor cell type is not a factor.
3. Derivation of iPSC Lines
It may be helpful to characterize your iPSC lines in relation to ESCs before attempting to perform TEC. We have characterized our lines by 1) expression of endogenous pluripotency markers (SSEA-1, Oct4, Sox2, Nanog) by immunocytochemistry, 2) karyotype analysis by chromosome counting and 3) embryoid body formation. One may also perform lentiviral-specific RT-qPCR to confirm that the proviral transgenes are not expressed in the iPSCs. However, we have identified fully pluripotent iPSCs using only morphology, immunostaining and karyotyping. In our experiments, selection of iPSC lines based on ESC-like morphology and growth characteristics results in the majority of the lines expressing pluripotency markers while we typically identify several lines with potentially abnormal karyotypes.
4. Preparation of iPSCs for Blastocyst Injection
Passage number of a PSC line has been shown to affect its pluripotency18 although this may be line dependent19. We have used iPSCs of from passages 8-14 to produce adult all-iPSC mice.
5. Generation of Tetraploid Blastocysts
Procedures performed in this section have been described in detail elsewhere5,6,20. Here we outline our technique, optimized for the BTX Electro Cell Manipulator ECM 2001.
6. Microinjection of iPSCs into Tetraploid Blastocysts
We use a Nikon TE-2000U inverted microscope equipped with DIC optics and Narishige micromanipulators for blastocyst injection. Each tetraploid blastocyst is injected with 10-12 iPSCs using a standard protocol for ESC injection into mouse blastocysts that has been demonstrated in a previous JoVE publication5,20,21
7. Transfer of Complemented Tetraploid Blastocysts into the Uterine Horns of Recipient Mice
Complemented tetraploid blastocysts are surgically transferred to the uterine horns of female recipient mice according to the guidelines of the researcher’s institute, using the standard technique20 which we shall briefly summarize. Select female CD-1 mice at the pro-estrus stage and set them up for mating with vasectomized males. Check for vaginal plugs the next morning. Females are ready for uterine embryo transfer two days after the plug was detected (2.5 dpc).
One day before recipient females are mated with vasectomized males, set up additional CD-1 females with non-vasectomized males to be used as foster mothers for all-iPSC mice retrieved by Caesarian section.
8. Caesarean Section and Fostering of iPSC-derived Pups
The transfer of TC embryos typically results in multiple resorptions after the implantation, even if the iPSC or ESC line has a high developmental potential. As a result, one can expect not more than 4 viable pups (usually 1-2) per recipient. These small litters are usually neglected by recipients. To increase the level of neonatal care and the rate of survival, we perform C-sections and fostering according to the standard protocols20. To perform the Caesarean section, euthanize recipient mice 16 days after embryo transfer at 7-8PM (recipient 18.5 dpc) and dissect pups from the uterine horns. Foster viable pups to CD-1 mothers that delivered litters the same day.
In step 3, “Derivation of iPSCs from MEFs”, one should observe morphological heterogeneity and immature iPSC colony formation starting 4-5 days after doxycycline/VPA addition and mature colonies between 7-10 days (Figure 2). The production of one-cell tetraploid embryos in step 5 is highly efficient (Figure 3). We routinely observe up to 95% of treated two-cell embryos successfully fuse to produce tetraploid one-cell embryos. The protocol followed to inject iPSCs into tetraploid blastocysts (Step 6, Figure 4) is similar to the protocol for injection of ESCs into diploid blastocysts to generate chimeric mice, and can be performed by an experienced microinjectionist. The number of live pups born depends on the cell line (Table 1).
MEF preprogramming efficiency 0.01-0.03% | ||||
Efficiency of iPSC mouse production by TEC | ||||
Name | Description | Blastocysts injected | Live Newborn | Live Adult |
iMZ-21 | iPSC | 867 | 53 (6.1%) | 19 (2.2%) |
iMZ-9 | iPSC | 195 | 7 (3.6%) | 4 (2.1%) |
iMZ-11 | iPSC | 338 | 1(0.3%) | 0 (0%) |
Table 1. Representative Results.
Figure 1. Schematic of experimental design. Top left: Production of tetraploid blastocysts. Fertilized two-cell embryos from albino mice are electrofused to generate tetraploid one-cell embryos, which are cultured in vitro to the blastocyst stage. Bottom left: Reprogramming. Mouse embryonic fibroblasts are transduced with lentiviral particles encoding Oct4, Sox2, Klf4 and c-Myc and the reverse tetracycline transactivating protein, rtTAM2.2. Addition of doxycycline results in transgene expression and the initiation of reprogramming to iPSCs. Right: Production of iPSC mice. iPSCs derived from pigmented mice are injected into the blastocoel of tetraploid blastocysts and then surgically implanted into pseudo-pregnant recipient mice. Newborn iPSC mice are delivered by Caesarian section and cross-fostered. Click here to view larger figure.
Figure 2. Morphological changes associated with reprogramming. From left to right: Examples of the morphological progression from fibroblasts to iPSC colonies during the course of a reprogramming experiment. Click here to view larger figure.
Figure 3. Production of tetraploid embryos. Diploid two-cell embryos are subjected to an electric pulse resulting in blastomere fusion and generation of one-cell tetraploid embryos.
Figure 4. Production of iPSC mice. Left: iPSCs are injected into the blastocoel of a tetraploid blastocyst. Middle: Newborn iPSC mice are distinguished by pigmented eyes. Right: iPSC mouse at three weeks post-delivery.
Generating mice from iPSC lines using TEC assays provides a stringent functional test for the pluripotency of an iPSC line. This test may be useful to assess the relative efficacy of different reprogramming methods or to identify iPSC lines that may be most useful for generating certain cell types in vitro. Mice generated from iPSCs may be used to stringently test the long-term stability and tumorigenicity of iPSC-derived tissues. This protocol will be useful to investigators wishing to generate fully pluripotent iPSC lines or iPSC mice or to compare the relative utility of different reprogramming methods.
The mechanisms that control the generation and identification of fully pluripotent iPSCs remain poorly understood and it is possible that some iPSC lines produced using this method will not pass the TEC test. Many factors may vary between experiments including genetic backgrounds, lentiviral titer, patterns of lentiviral insertion, cell cycle parameters of the donor population, inter-laboratory differences in various steps of the TEC procedure and variable propensities of iPSCs to harbor genetic or epigenetic aberrations. To best ensure success, we take care to establish appropriate levels of lentiviral gene expression in iPSC derivation experiments by testing viral dilutions on control MEFs to ensure that each virus is sufficiently concentrated to produce detectable gene expression at least 80% and ideally 100% of the MEFs. This allows us to identify lines with multiple copies of different lentiviruses while limiting toxicity to the MEFs and producing colonies without overcrowding the wells. It should be noted that multiple other protocols have been shown to produce iPSCs with full developmental potential, using multiple methods and donor cell sources suggesting that multiple paths to full pluripotency may exist1,8-13,15. At present, however, no definitive biomarker of fully pluripotent iPSC has been identified and therefore the TEC assay remains the gold standard test of whether an iPSC line can generate all cell lineages in an organism.
The authors have nothing to disclose.
Support to KKB, MJB, JLH and KLN was provided by the California Institute for Regenerative Medicine, the Pew Charitable Trusts Biomedical Scholars Program, the Esther B. O’Keeffe Family Foundation and the Shapiro Family Foundation. KKB is a Donald E. and Delia B. Baxter Foundation Faculty Scholar.
Name of the reagent | Company | Catalogue number | Comments (optional) |
DMEM (high glucose) | Invitrogen | 11965-092 | |
ES cell qualified FBS | Invitrogen | 104392-024 | |
FBS | Invitrogen | 16140-071 | |
Glutamax | Invitrogen | 35050-061 | |
β-Mercaptoethanol | Sigma | Sigma M7522 | |
0.1% Gelatin | Millipore | ES006-B | |
MEM Non-Essential Amino Acids | Invitrogen | 11140 | |
Medium 199 | Invitrogen | 11150-059 | |
Penicillin/Streptomycin | Invitrogen | 15140-122 | |
ESGRO (murine LIF) | Millipore | ESG1106 | |
Valproic Acid | Sigma | P4543 | |
DMSO | Fisher | BP231-100 | |
0.25% Trypsin-EDTA | Invitrogen | 25200 | |
PBS Ca2+/Mg2+ | Invitrogen | 14040-133 | |
PBS Ca2+/Mg2+ free | Invitrogen | 14190-144 | |
Pregnant mare serum gonadotropin, for superovulation, freeze-dried, 2,000 IU | Harbor-UCLA Research Institute | n/a | |
Chorionic gonadotropin, human | Sigma | C1063 | |
FHM medium with Hyaluronidase | Millipore | MR-056-F | |
KSOM-1/2 AA medium | Millipore | MR-106-D | |
FHM | Millipore | MR-024-D | |
Water, for embryo transfer, embryo tested | Sigma | W1503 | |
Mineral oil, embryo tested | Sigma | M5310 | |
CaCl2 | Sigma | C7902 | |
MgSO4 | Sigma | M2773 | |
D-Mannitol | Sigma | M4125 | |
Bovine serum albumin (BSA), embryo tested | Sigma | A3311 | |
Mouse embryonic fibroblasts, non-irradiated | Millipore | PMEF-CFL | |
Media and buffers used in this protocol HEK293T growth medium. 90% DMEM, 10% FBS, 100 U/ml penicillin and 10 mg/ml streptomycin. Exclude penicillin and streptomycin from HEK media used on day of transfection. HEK medium can be stored at 4 °C for up to 1 month. 2x HBS. 42 mM Hepes, 274 mM NaCl, 10 mM KCl, 1.5 mM Na2HPO4·7H2O, 12 mM Dextrose. pH to 7.1 +/- 0.1. pH is critical! Sterile filter and store at 4 °C. Mouse embryonic fibroblast (MEF) growth medium (also for use with feeders). 70% DMEM, 20% Medium 199, 10% FBS, 100 U/ml penicillin and 10 mg/ml streptomycin. Store at 4 °C for up to 1 month. ESC growth medium. 85% DMEM,15% ES cell qualified FBS, 1x Glutamax, 0.1 mM non-essential amino acids, 0.1 mM β-mercaptoethanol, 1,000 U/ml ESGRO, 100 U/ml penicillin and 10 mg/ml streptomycin. ESC media can be stored at 4 °C for up to three weeks. Electrofusion medium. 0.3 M Mannitol, 0.1 mM MgSO4, 50 mM CaCl2, and 3% BSA in embryo tested water. Store at 4 °C for up to 3 months. |