ここで紹介するダイレクトPCR法は、未精製の植物および動物組織の少量から直接PCR増幅を容易にします。
ダイレクトPCR法は、未精製サンプルの少量から直接PCR増幅を容易にし、いくつかの植物や動物の組織( 図1)のためにここに例示されている。ダイレクトPCRは、彼らにこのような阻害剤の耐性が高いなどのユニークな特性を与える二本鎖DNA結合ドメインを含む特別に設計されたサーモサイエンティフィックPhusionとPHIRE DNAポリメラーゼ、に基づいています。
PCRベースの標的DNAの検出は、導入遺伝子の植物の遺伝子型解析と検証を含む、植物研究の多数のアプリケーションを持っています。植物組織からPCR法は、伝統的に高価なまたは有毒な試薬を必要とするかもしれない最初のDNA単離工程を伴う。プロセスは時間がかかり、クロスコンタミネーション1,2のリスクを増大させる。逆に、サーモサイエンティフィックPHIREプラントダイレクトPCRキットを用いて、標的DNAは簡単に前にDNAを抽出することなく検出することができる。モデルでは、ここに示さ派生切断増幅多型配列を解析した例(dCAPS)3,4は、 シロイヌナズナ植物の葉から直接実行されます。 dCAPSジェノタイピングアッセイは、SNP対立遺伝子特異的な制限エンドヌクレアーゼ消化によって3個の一塩基多型(SNP)を同定するために用いることができる。
いくつかの植物試料は、彼らがそのようなフェノール化合物としてPCRを妨害する成分を含んでいるため直接PCR法を用いている場合にはより挑戦的になる傾向があります。これらのケースでは、化合物を除去するために追加の手順が伝統的に2,5を必要とされる。ここでは、この問題は直接PCR増幅( 図1)に続いて迅速かつ簡単に希釈プロトコルを使用することによって克服される。標本はタンニンを含むフェノール化合物を大量に含んでいるため十五歳のオークの葉は厳しい植物のモデルとして使用されています。
マウスへの遺伝子導入は大まかdeveloの遺伝子の役割を研究するために使用されpment、生理学や人間の病気。これらの動物の使用は、通常のPCRで、導入遺伝子の存在をスクリーニングする必要があります。伝統的に、これはPCR解析用DNAは耳、尾やつま先組織6,7から精製されている間の時間がかかるのDNA単離工程を伴う。しかし、サーモサイエンティフィックPHIRE動物組織ダイレクトPCRキットトランスジェニックマウスとの事前のDNA精製せずに遺伝子型を決定することができます。唯一つのプライマーセットはサイズが大きく異なる2つのフラグメントの増幅のために使用されている挑戦的な例については、ここを実証されるように、このプロトコルトランスジェニックマウスのジェノタイピングでは、マウスの耳組織から直接得られる。
ここで示したダイレクトPCR法は、必要な時間を短縮し、未精製サンプルの少量から直接PCR増幅を可能にし、植物や動物のジェノタイピング( 図7)のワークフローを簡素化します。また、ここで示したダイレクトPCR法( 図3)との組み合わせで希釈プロトコルを使用することである。希釈プロトコルが困難なサンプル( 例えば高齢者の植物の葉は、干渉化合物を含有する植物種)または長い(またはGCリッチ)アンプリコンとをお勧めします。新しいダイレクトPCR実験を開始するときに、このプロトコルは、反応の最適化を可能にする、特に便利です。プロトコルは、このような組織材料および/または使用したプライマーの違いに起因する低い生成物の収率として時折困難に対処するためのツールとして機能することができます。また、同じサンプルから複数の反応を実行するとき、希釈プロトコルの使用はサンプル全体が一つに消費されないことを保証し反応。
PCRのための植物からDNAを精製するためには、規則は潜在的にPCR解析8に干渉する可能性があるさまざまなコンポーネントを使用して、DNA単離に続く細胞溶解を行うことでした。高フェノール含量、ポリビニルピロリドンを加えて特に難しい植物のため、伝統的に細胞溶解2,5続くDNAに結合する化合物を除去するために使用されていました。ここで明らかなように、これらの複雑な、時間のかかるステップは標的DNAを検出するためにPHIRE工場ダイレクトPCRキットを使用することによって回避することができます。細胞溶解とDNA分離ステップが直接シロイヌナズナ植物の葉( 図2)から、敏感dCAPS技術を使用して省略することができます。ここに示したように、希釈プロトコルは効果的にPCR法( 図3)に干渉することが問題の成分の存在を管理します。
伝統的に、動物タイピングするための前提条件であったisolati有機溶媒抽出、アルコール沈殿、遠心ステップ6,9,10続く皮膚や結合組織を消化するプロテイナーゼKとの長いインキュベーションによって特徴付け毒性、時間のかかるプロセスを通じて、動物組織からのゲノムDNAの上に。ここで示したように、このプロセスの簡素化は、トランスジェニックマウスは、従来のDNA精製( 図4)を使用せずに遺伝子型を特定することができるように、PHIRE動物組織ダイレクトPCRキットの使用によって達成される。唯一つのプライマーセットが大きいサイズの差を持つ2つの断片の増幅のために使用されたとして、この記事で紹介例は特に困難である。プロトコルの生得の難しさにもかかわらず、単純な希釈プロトコルの組み合わせは直接PCR法の使用は、2つのPCR産物( 図4)の高収率が得られた。
PCRベースの標的DNAの検出は、識別するために、遺伝子型解析を含め、研究に多くのアプリケーションを持っている開発、生理学と疾患における遺伝子の役割。特殊なDNAポリメラーゼの阻害剤の許容範囲により、プロトコルが前にDNAを精製することなく、最小限の時間で完了することができます。
The authors have nothing to disclose.
シロイヌナズナサンプルと関係するPCRプライマーのために私達は教授試しプレーKangasjärviと彼のグループは、植物ストレス群、植物生物学、バイオサイエンス学科、ヘルシンキ大学に感謝します。伝統的な手法を用いた実験は、夫人あいりLamminmäkiによって実施された。
トランスジェニックマウスのサンプルが博士Jaana Vesterinen、生物医学/生化学研究所、ヘルシンキ大学から提供された。
ハリスユニコアとハリス·カッティングマットShundersonコミュニケーションズ株式会社の商標です。その他すべての商標は、サーモフィッシャーサイエンティフィック社およびその子会社の商標です。
Name of the reagent | Company | Catalogue number | Comments |
Phire Plant Direct PCR Kit | Thermo Fisher Scientific | F-130 | 200 reactions (50 μl each) |
Phire Animal Tissue Direct PCR Kit | Thermo Fisher Scientific | F-140 | 200 reations (50 μl each) |
Harris Uni-Core 0.35 mm (pink) | Thermo Fisher Scientific | F-180S/L | Qty: 5/25 |
Harris Uni-Core 0.50 mm (blue) | Thermo Fisher Scientific | F-185S/L | Qty: 5/25 |
Harris Cutting Mat 6.4 × 7.6 cm | Thermo Fisher Scientific | F-190 | Qty: 5 |
SspI | Thermo Fisher Scientific | ER0771 | 100 μl (100 reactions) |
Piko 24-Well Thermal Cycler | Thermo Fisher Scientific | TCP0024 | |
24-Well Piko PCR Plates | Thermo Fisher Scientific | SLP0241 | |
GeneJET PCR Purification Kit |
Thermo Fisher Scientific | K0701 K0702 |
50 preps 250 preps |