MazeSuite is a complete toolset to prepare, present and analyze navigational and spatial experiments. Functional near-infrared spectroscopy (fNIR) is an optical brain imaging technique that enables noninvasive and portable monitoring of cerebral blood oxygenation changes. This paper summarizes collective use of MazeSuite and fNIR within a cognitive processing learning paradigm.
MazeSuite is a complete toolset to prepare, present and analyze navigational and spatial experiments1. MazeSuite can be used to design and edit adapted virtual 3D environments, track a participants’ behavioral performance within the virtual environment and synchronize with external devices for physiological and neuroimaging measures, including electroencephalogram and eye tracking.
Functional near-infrared spectroscopy (fNIR) is an optical brain imaging technique that enables continuous, noninvasive, and portable monitoring of changes in cerebral blood oxygenation related to human brain functions2-7. Over the last decade fNIR is used to effectively monitor cognitive tasks such as attention, working memory and problem solving7-11. fNIR can be implemented in the form of a wearable and minimally intrusive device; it has the capacity to monitor brain activity in ecologically valid environments.
Cognitive functions assessed through task performance involve patterns of brain activation of the prefrontal cortex (PFC) that vary from the initial novel task performance, after practice and during retention12. Using positron emission tomography (PET), Van Horn and colleagues found that regional cerebral blood flow was activated in the right frontal lobe during the encoding (i.e., initial naïve performance) of spatial navigation of virtual mazes while there was little to no activation of the frontal regions after practice and during retention tests. Furthermore, the effects of contextual interference, a learning phenomenon related to organization of practice, are evident when individuals acquire multiple tasks under different practice schedules13,14. High contextual interference (random practice schedule) is created when the tasks to be learned are presented in a non-sequential, unpredictable order. Low contextual interference (blocked practice schedule) is created when the tasks to be learned are presented in a predictable order.
Our goal here is twofold: first to illustrate the experimental protocol design process and the use of MazeSuite, and second, to demonstrate the setup and deployment of the fNIR brain activity monitoring system using Cognitive Optical Brain Imaging (COBI) Studio software15. To illustrate our goals, a subsample from a study is reported to show the use of both MazeSuite and COBI Studio in a single experiment. The study involves the assessment of cognitive activity of the PFC during the acquisition and learning of computer maze tasks for blocked and random orders. Two right-handed adults (one male, one female) performed 315 acquisition, 30 retention and 20 transfer trials across four days. Design, implementation, data acquisition and analysis phases of the study were explained with the intention to provide a guideline for future studies.
The prefrontal cortex (PFC) in the human brain facilitates cognitive control over the coordination of thoughts and actions in relation to internal goals. In particular, the anterior/dorsolateral PFC is known to mediate higher cognitive functions such as task management, planning and spatial navigation25. fNIR is a portable, safe and noninvasive brain monitoring tool that has been used in clinical, laboratory and natural settings to study brain activation. This exploratory study demonstrated the use of Maze Suite and fNIR to study neurobehavioral aspects of spatial navigation. In this exploratory study, the MazeSuite platform is used in conjunction with fNIR to study the neurobehavioral aspects of spatial navigation in the dorsolateral PFC and to demonstrate the combination of these two tools.
MazeSuite is an experimental design, presentation and analysis platform. It enables the creation and application of simple 3D environments with a user friendly graphical interface and automatically records behavioral measures for within subject or across subject comparisons. During the presentation of MazeSuite environments, simultaneous time-synchronized fNIR measurements were taken using a commercially available, portable, continuous wave fNIR system (Imager 1000, fNIR Devices, LLC) and COBI Studio software15. fNIR previously has been established as a safe and effective noninvasive brain monitoring tool in clinical, laboratory and natural settings for the study of brain activation7,11 and is used in this study to investigate cognitive responses associated with contextual interference during of spatial navigation tasks.
To examine the effects of practice order contextual interference, subjects were presented with either a low interference (BLK) or high interference (RND) practice order. These distinct practice schedules were used to test the effect of learning multiple virtual spatial navigation maze tasks across acquisition, retention and transfer tests. The behavioral results indicate that for both practice orders, there is a monotonic decreasing trend in the total time necessary to complete maze, suggesting that as subjects practice, they completed each maze in shorter periods of time. In addition, the average speed with which subjects navigated the maze (maze velocity) increased with practice. These improvements in behavioral measures across time are expected inferences of learning. Mean oxy-Hb concentration changes during practice trials indicate that the BLK practice required higher brain activation when compared with RND practice order.
RND practice resulted in faster completion time and shorter path lengths when compared to the BLK practice order for both retention and transfer, respectively. A decreasing trend observed in the mean oxy-Hb for BLK and RND practice across retention trials indicating reduced activity in the PFC. This finding is expected as previous research has suggested that there is a reduction in the activity of the PFC during the later stages of learning12,26.
Moreover, the navigation in new mazes during the transfer phase required higher brain activation for BLK practice subject compared to RND practice subject. Given that the practice order was different for the tasks already learned (i.e., maze1, maze2, and maze3), this stratified random practice order for the subject that learned the tasks in a sequential (BLK practice) order may have been sufficiently novel to require additional effort and cognitive resources to perform the tasks12,26. However, for the RND practice, the transfer phase of neural activation was not higher than the retention phase. These findings corroborate the PET findings with spatial navigation of virtual mazes reported by Van Horn and colleagues12.
In summary, we described the use of MazeSuite in combination with COBI Studio for a study on the effects of contextual interference related to practice order when learning spatial navigational tasks. The fNIR methods discussed here are not limited to spatial navigation tasks and can be used for a variety of tasks in other neuroimaging studies. Design, implementation, data acquisition and analysis phases of the study were explained with the intention to provide a guideline for future studies.
The authors have nothing to disclose.
Funding for this work was provided in part by the Commonwealth of Pennsylvania # 4100037709 subcontract #240468 and Drexel University subcontract #280773.