我们已经建立了诱导多能干人类胚胎干细胞与小分子物质,使推导的大量供应人类神经祖细胞和神经细胞类型,在发展中国家中枢神经系统神经修复定义的条件下保持直接的神经母细胞的协议。
有一个大的需要尚未得到满足的临床适合人类神经细胞修复或再生受损的中枢神经系统(CNS)的结构和电路在今天的医疗保健行业的源。细胞疗法具有很大的承诺,以挽回失去的神经组织和中枢神经系统疾病的功能。但是,基于对中枢神经源性神经干细胞的细胞疗法遇到供应的限制和困难,在临床上使用,由于他们的文化和失败的可塑性有限扩张后的广泛传代1-3能力。尽管取得了一些有益的结果,出现中枢神经系统派生的人类神经干细胞(hNSCs)通过生产的营养和神经保护分子施加其治疗效果,主要是由非神经细胞的后代救援的内源性细胞1-3。另外,多能干的人类胚胎干细胞(胚胎干细胞)毫无顾忌治愈supplyin广泛的神经系统疾病克人类在开发中枢神经系统再生1,4-7的神经细胞类型的多样性。然而,如何进行渠道广泛的分化潜能的多能胚胎干细胞是有效的和可预见的所需的表型的发育研究和临床翻译的一个重大挑战。依靠传统的方法多通过自发的胚层分化的多能干细胞系的倾向,导致效率低下和不可控的谱系承诺,往往是由表型异质性和不稳定性,因此,一个高风险的致瘤性7-10。此外,未定义外国/动物生物补充和/或通常被用于隔离,扩建,和人类胚胎干细胞分化的馈线可直接利用等专门的细胞移植患者问题 11-13 。为了克服这些障碍,我们已经解决了一个定义的文化系统中的元素的必要和足够为sustaining外胚层的胚胎干细胞pluripotence,作为临床适合人类胚胎干细胞的新的De Novo推导的平台,有效地指导临床相关的谱系对小分子14(请在图中看到的示意图。1)这种人类胚胎干细胞均匀。维甲酸(RA)不会诱发1,14馈线保持未分化的人类胚胎干细胞神经分化。小鼠胚胎干细胞不同,治疗胚胎干细胞分化的胚状体(EBS)仅略有增加产量低的神经元1,14,15 。然而,各种小分子和生长因子的筛选后,我们发现,这些规定的条件提供足够维甲酸(RA)诱导,进一步发展到在人类神经祖细胞和神经元产生的神经母细胞的多能胚胎干细胞的神经外胚层规范直接开发高效率的中枢神经系统( 图2) 。我们定义为神经诱导条件多能胚胎干细胞不干预多系胚体阶段,使控制大量供应了整个人类神经细胞的发育阶段的细胞为基础的疗法的频谱效率的推导,直接从爆炸。
的发育研究和临床翻译的重大挑战之一是如何进行渠道广泛的分化潜能的多能干的人类干细胞所需的表型,高效和可预见的的。虽然这种细胞可以自发分化成胚层细胞在体外通过多血统的聚合阶段,只有一小部分细胞追求一个给定的血统 1,4 。在这些胚胎干细胞衍生的聚合,同时出现了大相径庭的不受欢迎的可能驻留在三个胚层的细胞类型的大量经常出现不仅效率低,所需的表型,但不可控和不可靠的。虽然心脏和神经系已在以前的报告中得出的,但是,在通过胚层诱导多能干细胞的致瘤性的高风险的专门细胞效率低下以下transplantatioN有阻碍进一步的临床翻译。
人类胚胎干细胞线最初是根据共培养保持增长被捕的小鼠胚胎成纤维细胞(MEFs)4 。几个人类馈线,馈线,化学制定文化系统已发展为11-13人胚胎干细胞,虽然必要的,足以维持人类多能干细胞的自我更新的元素仍然没有得到解决。这些外源性饲养层细胞和生物试剂,有助于保持未分化的人类胚胎干细胞的长期稳定增长,而面具,多能干细胞的能力,以应对发育信号。保持在未分化的人类胚胎干细胞定义的生物制剂无文化系统,让忠实的扩张和可控性的直接分化是其治疗的效用和潜在的关键因素之一。类风湿性关节炎是不够的诱导未分化的人类胚胎干细胞神经分化的维持根据以前报道的康迪特含有外源性饲养层细胞的离子。虽然神经谱系出现在人类胚胎干细胞分化的相对早期阶段,与RA治疗的胚胎干细胞分化的多系的聚合(胚体)仅略有增加产量低的神经元1, 14,15。为了实现统一的一个特定的血统的人类多能干细胞的转换,我们雇用了一个定义文化系统有能力投保未分化的人类胚胎干细胞的增殖完全确定条件,以及控制多能胚胎干细胞的有效诱导到一个特定的临床相关的谱系提供简单的小分子( 图1,图2)。在人类中枢神经系统的发展,未来的研究将揭示遗传和表观遗传控制分子,作为替代品,这可能为人类胚胎干细胞多能性的命运的小分子介导的直接控制和调制方式时所产生再生疗法的临床相关的谱系。如果没有治疗类风湿性关节炎,1-5%的人类胚胎干细胞将发生自发分化成神经元1,14,15。 RA的治疗,我们已经能够产生大于95%的胚胎神经祖细胞和神经细胞从人类胚胎干细胞保持在一个过程,可能会模仿人类的胚胎发育14下一个定义文化。近日,已知的神经命运决定基因已被用于transdifferentiate成人神经祖细胞和神经元的低效率0.5-8%,17,18的小鼠成纤维细胞。不过,体细胞重新编程历史上一直与基因表达异常加速衰老和受损的治疗公用事业 19-21 。最后,我们在这里建立的协议是从内细胞团(ICM)或人类囊胚4外胚层衍生的多能胚胎干细胞,可能并不适用于其他的多能干细胞,包括动物起源的胚胎干细胞,胚胎干细胞从早期的桑椹胚的(八细胞)胚胎22,artificially重新编程的细胞23 。
The authors have nothing to disclose.
XHP一直支持由国家卫生研究院(NIH)国家老龄问题研究所(NIHK01AG024496)和尤尼斯肯尼施莱佛国立儿童健康和人类发展研究所(NIHR21HD056530)的赠款。
Name of the reagent | Company | Catalogue number | Comments (optional) |
---|---|---|---|
Gelatin | Sigma | G1890 | |
Matrigel | BD bioscience | 356231 | Growth factor reduced |
Human laminin | Sigma | L6274 | |
all-trans-Retinoic acid | Sigma | R2625 | |
DMEM/F12 | Invitrogen | 10565018 | |
DMEM | Invitrogen | 31053036 | |
DMEM-KO | Invitrogen | 10829018 | |
Knock-out serum replacement | Invitrogen | 10828028 | |
MEM nonessential amino acid solution (MNAA, 100X) | Invitrogen | 11140050 | |
MEM amino acids solution (MEAA, 100X) | Invitrogen | 11130050 | |
β-Mercaptoethanol | Invitrogen | 21985023 | |
Albumax | Invitrogen | 11020021 | |
Ascorbic acid | Sigma | A4403 | |
Human transferrin | Sigma | T8158 | |
Human bFGF | PeproTech | AF-100-18B | |
Human insulin | Invitrogen | 12585014 | |
Human activin A | PeproTech | 120-14E | |
Human BDNF | PeproTech | AF-450-02 | |
Human VEGF | PeproTech | AF-100-20 | |
Human NT-3 | PeproTech | 450-03 | |
Heparin | Sigma | H5284 | |
N-2 supplement (100X) | Invitrogen | 17502048 | |
6-well ultralow attachment plate | Corning | 3471 | |
6-well plate | Corning | 3516 |