このプロトコルは、自動化された蛍光タイムラプス顕微鏡を用いて時間の異なる細菌の単セルの動作を監視するためにステップバイステップ手順を提供します。さらに、我々は、顕微鏡画像を分析する方法のガイドラインを提供します。
ここ数年の間に科学者は微生物集団ベースの実験から得られた平均的なデータが単一の細胞の挙動、状態や表現型の代表ではないことをますます認識するようになりました。この新しい洞察による単一細胞の研究の数は、(最近のレビューのために1,2,3を参照)継続的に上昇する。しかし、適用される単一のセル技術の多くは、時間のある特定の単一のセル(例えばフローサイトメトリーまたは標準顕微鏡)の開発と動作を監視することはできません。
ここで、我々は多くの世代のための成長と分裂を介して枯草菌と肺炎球菌の個々の細菌細胞を以下のと(の蛍光)を記録できるようにいくつかの最近の研究4、5で使用される顕微鏡法、6、7、の詳細な説明を提供しています。結果として得られる動画は、1つの共通祖先に由来する集団内の単一セルの歴史をさかのぼることによって系統学的系統樹を構築するために使用することができます。このタイムラプス蛍光顕微鏡法は、個々の細胞の増殖、分裂と分化を調査するだけでなく、特定の細胞挙動のセルの歴史と祖先の影響を分析するために使用することはできません。また、タイムラプス顕微鏡は、理想的には細菌の細胞周期の間に遺伝子発現のダイナミクスとタンパク質の局在を調べるために適しています。方法は、細菌の細胞を調製し、微小コロニーに単一細胞の伸長を有効にするために顕微鏡スライドを構築する方法を説明します。一言で言えば、単一の細胞は、彼らが成長し、温度制御された環境室内で蛍光顕微鏡下で割っているアガロースを添加した増殖培地から成る半固体表面上にスポットされています。画像は特定の間隔でキャプチャされ、後にオープンソースソフトウェアImageJを用いて解析している。
他の多くの単一のセル技術とは対照的に、ここで説明するタイムラプス蛍光顕微鏡法は、その祖先、その動作、および除算イベントに関する特定のセルの履歴をたどるために使用することができます。蛍光標識した標的プロモーターまたはタンパク質と組み合わせることで、特定の発生経路の活性化は、時間とタンパク質の局在ならびにタンパク質のダイナミクスは、細菌の開発時に監視することができるで追跡することができます。
上記に示したように、別の細菌種に集中して研究は特定の細菌の要件に応じて増殖条件を適応することによって行うことができます。我々が遭遇した唯一の制限は、成長条件とサンプルサイズに関連しています。密閉された環境のために、培地条件が実験中に変更することはできません。また、実験ごとに4つの系統の最大は、効率的に監視することができます。
いくつかの重要なステップを考えると、ここで説明する単一細胞解析の手法は、容易に自動化された顕微鏡を使用して適用することができます。以下では、これらの重要な手順の概要が与えられます。詳細情報は、メインテキストに記載されて一般的な準備が:それは前の実験への特定の細菌のために必要なオートフォーカスの設定を確認するのが賢明です。可能であれば同様に、蛍光の可視化のためのおおよその最適な設定は、事前に決定されるべきである。また、準備したタイムラインは時間ですぐに使用できるすべての材料を持ってするのに役立つ、以下の(スライド1時間の準備を、顕微鏡の設定をプログラミング、顕微鏡室を事前に温めて細胞は、目的の増殖期になる前に、図1を参照) B.の 。 成長TLMとCDMの枯草菌 :TLMとCDMが化学的に定義されている飢餓の媒体Bの枯草菌はゆっくりと成長。細胞を培地で栽培される時間期間は、特定の菌株によって延長する必要がある場合があります。低成長がお互いに積み重ねから細胞を防止顕微鏡の試料の調製は:。遺伝子のフレームの間に空気の泡を、スライドガラスとカバーガラスは、アガロースベースの媒体の広範囲な乾燥を防ぐために防止する必要があります。同じことはミディアム/カバースリップのインタフェースにも当てはまります。それは水泳および/ または複数の層の成長を防ぐために、細胞が十分に乾燥させることが重要ですタイムラプス蛍光顕微鏡:。スライドだけでなく、環境室の前の温暖化が主要なオートフォーカスの問題を防ぐために重要である。これらは(サンプルが十分に乾燥させて提供)実験中にフィールドとフォーカスに滞在する最高のチャンスがあるので、細胞は、寒天のパッドの中央に選択する必要があります。実験ごとに10カ所の最大は、まだ正しく動作します。興味のある最初のセルを選択した後のみ(詳細は本文を参照)フォーカスを調整するためのソフトウェアを使用しています。 。細胞は30分間隔での実験分析の最初の数時間中にフォーカス可能かどうかを確認してください:それは媒体の背景が蛍光チャンネルで同じような値を持っているかどうかを事前に拡張された分析手順に確認することが重要です。小さ な塵の粒子が、培地成分、汚れたレンズまたは小型アガロースの塊は、 トラブルシューティングを分析するために映画が困難または不可能に、局所的に増大した蛍光に貢献することができます。細胞は互いの上に成長した場合、これはどちらかのカバースリップがあったことを示すかもしれません早すぎるか、そのメディアが微小コロニー単分子膜の成長に適していない添付。スライド上の他の細胞が喜んで分割するのに対し、関心の細胞は連続して、途中で死亡した場合、あなたは位置にUVフィルターを置くかどうかをチェックすることがあります。また、長時間の実験中に、露光時間や光強度を減少させるために役立つかもしれない。
The authors have nothing to disclose.
JWVのグループでの作業は、EUのマリーキュリー復帰フェローシップ、Sysmo2グラント(NWO-ALW/ERASysBio)、ホライゾン助成金(ZonMW)でとVENIフェローシップ(NWO – ALW)によってサポートされています。 OPKのグループは、いくつかのSTWの助成金(NWO)、SYSMO1(IGdeJ)とSYSMO2助成金、ESF Eurocoresシンバイオ助成金(SynMod)でと工業的発酵食品と栄養のトップ研究所のゲノミクスのためのKluyverセンターによってサポートされています。
Name of the reagent | Company | Catalogue number | Comments (optional) |
---|---|---|---|
Gene Frame | ABgene | AB-0578 | 1.7 x 2.8 cm |
high-resolution low melting agarose | Sigma | A4718 | |
big cover slip | several | 24 x 50 mm | |
if desired, membrane dye, e.g. FM 5-95 | Invitrogen | T23360 | other membrane dyes are also available: http://probes.invitrogen.com/media/pis/mp34653.pdf |
Time-lapse microscope with environmental chamber | several | see details for our device in the corresponding sections |