A robust way to study neuronal avalanches, i.e. scale-invariant spatio-temporal activity bursts, indicative of critical state dynamics in cortex. Avalanches emerge spontaneously in developing superficial layers of cultured cortex which allows for long-term measurements of the activity with planar integrated multi-electrode arrays (MEA) under precisely controlled conditions.
The cortex is spontaneously active, even in the absence of any particular input or motor output. During development, this activity is important for the migration and differentiation of cortex cell types and the formation of neuronal connections1. In the mature animal, ongoing activity reflects the past and the present state of an animal into which sensory stimuli are seamlessly integrated to compute future actions. Thus, a clear understanding of the organization of ongoing i.e. spontaneous activity is a prerequisite to understand cortex function.
Numerous recording techniques revealed that ongoing activity in cortex is comprised of many neurons whose individual activities transiently sum to larger events that can be detected in the local field potential (LFP) with extracellular microelectrodes, or in the electroencephalogram (EEG), the magnetoencephalogram (MEG), and the BOLD signal from functional magnetic resonance imaging (fMRI). The LFP is currently the method of choice when studying neuronal population activity with high temporal and spatial resolution at the mesoscopic scale (several thousands of neurons). At the extracellular microelectrode, locally synchronized activities of spatially neighbored neurons result in rapid deflections in the LFP up to several hundreds of microvolts. When using an array of microelectrodes, the organizations of such deflections can be conveniently monitored in space and time.
Neuronal avalanches describe the scale-invariant spatiotemporal organization of ongoing neuronal activity in the brain2,3. They are specific to the superficial layers of cortex as established in vitro4,5, in vivo in the anesthetized rat 6, and in the awake monkey7. Importantly, both theoretical and empirical studies2,8-10 suggest that neuronal avalanches indicate an exquisitely balanced critical state dynamics of cortex that optimizes information transfer and information processing.
In order to study the mechanisms of neuronal avalanche development, maintenance, and regulation, in vitro preparations are highly beneficial, as they allow for stable recordings of avalanche activity under precisely controlled conditions. The current protocol describes how to study neuronal avalanches in vitro by taking advantage of superficial layer development in organotypic cortex cultures, i.e. slice cultures, grown on planar, integrated microelectrode arrays (MEA; see also 11-14).
1. Sterile, Sealable Glass Chamber with MEA for Long-term Recordings
2. Ingredients Required for the Preparation and Growth of Organotypic Cultures
3. Cortex and Ventral Tegmental Area (VTA) Tissue Dissection (time: < 1hr)
4. Mounting Cortex and VTA Tissue Slices on the MEA (Time: <1 hr)
5. Electrophysiological Recording and Stimulus Generation
6. Representative Results:
With new MEAs about 8 – 9 out of 10 cultures will survive for many weeks. Most of our long-term recordings take place inside the incubator in culture medium , which allows us to follow the development of individual cultures over the course of many weeks5. Based on our experiments, LFP recordings can be reliably obtained with MEAs used for more than 100 culture days. In contrast, extracellular spike activity is more reliably measured with relatively new MEAs (<40 culture days). In a typical experiment, we transfer an MEA from the storage tray (Fig. 1B, right) to the tray with the head stage attached (Fig. 1B, left) keeping the culture chamber sealed. For the cortex5, cortex-VTA co-cultures6, as well as in the anesthetized rat6 and the awake monkey in vivo 7, neuronal firing during neuronal avalanches in superficial layers occurs predominantly close to the peak negative deflection of the LFP (nLFP). Thus, the spatiotemporal organization of locally synchronized neuronal groups can be estimated by measuring the occurrence of nLFPs in space and time on the array 17.
Activity on the MEA tends to emerge in temporal clusters, such that activity at one electrode is accompanied by activity at other sites. Typical waveforms of the LFP during such activity periods are shown in figure 2A, by over plotting 3 clusters occurring several seconds apart. For each cluster, negative field deflections can be seen at several electrodes within a window of 1 s. When extracting nLFP peaks that cross a threshold of multiple negative SD, the activity in the form of nLFP peak times is conveniently visualized in a raster in which ‘columns’ of dots represent near coincident nLFPs at various electrodes (Fig. 2B). The spatiotemporal organization of this activity is rather complex; ‘columns’, which appear more or less homogenous at low temporal resolution, are composed of separate clusters at higher temporal resolution and so on (Fig. 2C). In fact, the emergence of spatiotemporal nLFP clusters is highly organized in cortical networks. More specifically, the organization is scale-invariant for neuronal avalanches. This is demonstrated by calculating the probability of cluster sizes at a given temporal resolution Δt. Here, clusters are composed of nLFPs that occur in the same or successive time bins (Fig. 2D). When the size of such a cluster is expressed in total number of nLFPs per cluster, or integrated nLFP amplitudes per cluster, the cluster size distributions reveals a power law, whose slope has been shown to be -1.5 2,4,5,7 (Fig. 2E,F). Note that this distribution identifies a scale-invariant ordering of cluster sizes that is the ratio of sizes s to k x s , where k is a constant factor, is k-1.5 , which is independent of s. This power law organization is independent of the size of the array 2, the temporal resolution Δt 2, and the threshold used to identify significant nLFP deflections 7. Because nLFP amplitude scales with neuronal group size 7, the scale-invariant organization of nLFPs reflects a scale-invariant, i.e. fractal, ordering of locally synchronized neuronal groups that include all sizes.
Figure 1. (A) Side and top views of the MEA with threaded glass ring mounted, and corresponding cap. (B) Inside view of the incubator. Left: headstage mount allowing for recording from a single culture under incubator condition. Right: Tray holding numerous MEAs for culture growth. Side wheels: stepping motor controlled rocking device for alternating submerged and atmosphere-exposed phase required for culture growth. (C) Schematic drawing for the coronal rat slices used for cortex-VTA co-cultures. Cortex sections (left) and midbrain sections (middle, right) containing the VTA ventral tegmental area (vta; grey) are obtained by cutting along the broken lines. Ctx: cortex; wm: white matter; cpu: striatum; vta: pons: pontine area. See also corresponding coronal plates 8, 18, and 20 by 15 . (D) Placement and growth of a single cortex-VTA co-cultures on the MEA and its development over the first 9 DIV in culture. Note the flattening of the culture and its progressive expansion on the array. Reflective tissue parts indicate degenerated cells and tissue debris. Healthy tissue is opaque and greyish under transillumination with visible light.
Figure 2. Neuronal avalanches in cortical organotypic cultures. (A) Overplot of three period of spontaneous activity on the array, separated by several seconds. Note that each activity period consists of negative LFP deflections on many electrodes on the array (each color labels one activity period). (B) Negative peak times of nLFPs from each electrode are assembled into a raster of activity. ‘Column’-like structures indicated periods of near synchronous activity. (C) Note that columns that appear highly synchronized at one time scale consist of multiple columns at the higher temporal scales (3 temporal scales shown). (D) Schematic representation of the neuronal avalanche algorithm. On a 2 x 2 electrode array peak time and amplitude of negative LFP deflections (nLFP) crossing a threshold of –x SD of the noise are identified. Spatiotemporal organization of nLFPs is clustered into successively active time bins of width Δt. The size of a cluster is identified by either the number of active sites, i.e. electrodes with nLFP (s = 4), or the integrated sum of nLFP amplitudes (s = 130 μV). The life time is measured in multiples of Δt. (E, F) Power law in cluster size distribution identifies clusters as neuronal avalanches. Note that the choice of a particular interelectrode distances Δd for the array (here 200 μm) introduces a particular Δt at which the dynamics should be observed. More specifically, the ratio in which Δd/Δt approximates the average propagation velocity in the network, at which the slope α of the power law is approximates -1.5 for neuronal avalanches 2,4,5. Please click here to see a larger version of figure 2.
1. Technical issues:
2. Developmental age of cortex cultures to study neuronal avalanches
Acute slices from rat cortex are commonly taken at PND 0 – 1 and cultured for many weeks on the MEA. Early studies have clearly demonstrated that single cortex slice cultures, after several weeks in vitro, maintain a layered structure with identifiable cell types that can be easily compared to in vivo cell classes 18,18-21. The layered organization in this in vitro system has been conveniently used to study thalamic innervation of cortex during development 22-24, as well as for driving subcortical structures such as the striatum 25,26. In fact, the specificity in the formation of neuronal connections within and across brain regions allows for the construction of complex in vitro systems that recapture numerous detailed projection systems, e.g. that of the cortex-basal ganglia circuitry 27-30.
After 4 – 6 weeks in vitro, single cortex slices 31 and cortex slices co-cultured with striatum 26 or thalamus 32 show spontaneous up- and down states typically found in vivo in the urethane anesthetized rat 33. The fine temporal organization of these up-states bears the hallmark of nested θ- and γ-oscillations indicative of an electrophysiologically mature network of pyramidal neurons and fast-spiking GABAergic interneurons 31. Importantly, in the absence of dopamine D2-receptor stimulation, maturation of parvalbumin-positive cortical interneurons is delayed by about 2 weeks in cortex slice cultures 34. In line with these findings, the developmental time course of nested θ-, β- and γ-oscillations is matched to that in vivo when cortex slices are co-cultured with the ventral tegmental area (VTA), which contains dopaminergic neurons projecting to the cortex 6.
These studies indicate that when studying neuronal avalanches, which crucially depend on mature fast GABAergic inhibition and are located in superficial layers of cortex 2,4, great care has to be taken to assure proper maturation of the cortical tissue. While neuronal avalanches arise in single cortex cultures over the time course of 2 – 5 weeks 4, when requiring a developmental time course that is matched to the in vivo development, cortex slices need an appropriate dopamine receptor stimulation, e.g. by co-culturing cortex slices with the VTA 6.
The authors have nothing to disclose.
This study was funded by the Division of Intramural Research Program (DIRP) of the National Institute of Mental Health, National Institutes of Health.
Name of the reagent | Company | Catalogue number | Comments (optional) |
---|---|---|---|
Integrated planar multielectrode array | Multichannel Systems (www.multichannelsystems.com) ALA Scientific Instruments (www.alascience.com) |
200/30iR-ITO-w/o | Titanium Nitrate (TiN) electrodes (30 mm diameter) have large surface resulting in low impedance ( ~1.5 kΩ at 1 kHz) and excellent wide-band recordings ( w/o – without ring) |
Chamber glass | www.aceglass.com | 7620-32 | Threaded glass cylinder |
Chamber cap | www.aceglass.com | 7622-114 | Plastic cap with Teflon insert |
Sylgard 184 | www.wpiinc.com | SYLG184 | Two-part silicone elastomer |
Poly-D-lysine | Sigma-Aldrich | P6407-5mg | γ-irradiated, lyophilized powder, cell cultured tested. Reconstituted with 5 ml deionised water before use. |
Gey’s Balanced Salt solution | Sigma-Aldrich | G9779-500mL | sterile filtered and cultured tested |
chicken plasma | Sigma-Aldrich | P3266-5mL | Lyophilized, reconstitute with 5 ml deionized water before use. |
thrombin | Sigma-Aldrich | T6634-1KU | from bovine plasma, lyophilized powder form. |
horse serum | Sigma-Aldrich | H1138-100mL | donor herd, heat inactivated, cell culture tested |
Basal Medium Eagle | Invitrogen | 21010-046 | 1x, 500 ml – (+) Earle’s Salts, (-) L-glutamine), |
Hank’s Buffered Saline Solution | Invitrogen | 24020-117 | 500 ml – (+) Magnesium, (+) calcium, w/phenol red) |
Chamber slides | Lab-Tek-Chamber Slide w/cover (Nunc), sterile | 177429 | |
Uridine | Sigma-Aldrich | U3003 | |
ARA-C cytosine-β-D-arabinofuranoside | Sigma-Aldrich | C6645 | |
5-fluoro-2’-deoxyuridine | Sigma-Aldrich | F0503 |