Une méthode pour l'incorporation de l'ADN plasmidique dans des cellules murines rétine dans le but d'effectuer soit du gain ou de perte d'études de la fonction<em> In vivo</em> Est présenté. Cette méthode s'appuie sur l'augmentation transitoire de la perméabilité des membranes plasmiques cellulaire induite par l'application d'un champ électrique externe.
La caractérisation fonctionnelle des gènes exprimés au cours du développement des mammifères rétine demeure un défi important. Le ciblage de gènes pour générer une perte constitutive ou conditionnelle de KOs fonction reste des coûts et de main-d'oeuvre, ainsi que beaucoup de temps. Ajoutant à ces défis, la rétine peut gènes exprimés ont un rôle essentiel en dehors de la rétine conduisant à confond involontaires lors de l'utilisation d'une approche à élimination directe. Par ailleurs, la capacité à exprimer un gène ectopique par un gain d'expérience fonction peut être extrêmement précieux lorsque l'on tente d'identifier un rôle dans la spécification du destin cellulaire et / ou la différenciation terminale.
Nous présentons une méthode pour l'incorporation rapide et efficace de plasmides ADN dans la rétine de souris néonatales par électroporation. L'application de courtes impulsions électriques au dessus d'un certains résultats intensité du champ dans une augmentation transitoire de la perméabilité de la membrane plasmatique, en facilitant le transfert de matériel à travers la membrane 1,2,3,4. Travail de pionnier a démontré que l'électroporation pourrait être utilisé comme une méthode de transfert de gène dans les cellules de mammifères en induisant la formation de pores hydrophiles membrane plasmique permettant le passage de l'ADN hautement chargé à travers la bicouche lipidique 5. Continue le développement technique a conduit à la viabilité de l'électroporation comme une méthode pour le transfert de gènes in vivo dans les tissus de souris multiples, y compris la rétine, la méthode pour ce qui est décrit aux présentes 6, 7, 8, 9, 10.
Solution d'ADN est injecté dans l'espace sous-rétinien, de sorte que l'ADN est placé entre les épithélium pigmentaire rétinien et la rétine de l'néonatale (P0) de la souris et impulsions électriques sont appliquées en utilisant une électrode de pincette. Le placement latéral de l'oeil chez la souris permet de s'orienter facilement de l'électrode de pince à l'alignement nécessaire pole pôle négatif de l'ADN-rétine positif. L'incorporation étendue et l'expression des gènes transférés peuvent être identifiés par jour postnatal 2 (P2). En raison de l'absence de migration latérale importante des cellules de la rétine, des régions et non électroporées électroporées sont générés. Non-électroporées régions peuvent servir de contrôles internes histologique, le cas échéant.
Électroporation la rétine peut être utilisé pour exprimer un gène sous un promoteur ubiquitaire, comme l'ACG, ou de perturber la fonction des gènes en utilisant des constructions ou des shRNA Cre-recombinase. Expression plus ciblée peut être atteint par la conception des constructions avec des promoteurs de gènes spécifiques de cellules. Visualisation des cellules par électroporation est réalisée en utilisant des constructions bicistronique exprimant la GFP ou par co-électroporation une expression de la GFP construire. Par ailleurs, les constructions peuvent être multiples électroporées pour l'étude des effets des gènes combinatoire ou le gain simultané et perte de fonction des gènes différents. Électroporation rétine peut également être utilisé pour l'analyse de la génomique éléments cis-régulateurs en générant des constructions d'expression approprié et mutants de délétion. De telles expériences peuvent être utilisés pour identifier les régions cis-régulatrices suffisante ou nécessaire pour l'expression des gènes cellulaires spécifiques 11. Expériences potentielles ne sont limitées que par la disponibilité de construire.
In vivo électroporation représente une méthode rapide et efficace pour la transformation de cellules de la rétine avec des plasmides d'expression d'ADN. Cette méthode permet à l'expérimentateur d'effectuer des études de gain de fonction en introduisant ectopique un gène d'intérêt sous le contrôle d'un promoteur ubiquitaire ou pour effectuer des études de perte de fonction en utilisant des constructions shRNA ciblant des gènes d'intérêt. Par ailleurs, plusieurs plasmid…
The authors have nothing to disclose.
Ce travail a été financé par le NIH R01EY020560-01 et par un érudit WM Keck Young en bourse de recherche médicale. Les auteurs tiennent à remercier Joseph Bedont pour son aide lors de l'imagerie de la rétine et de préparations injectables.
Name of Reagent | Company | Catalogue Number | Comments |
---|---|---|---|
Buffer Saturated Phenol | Invitrogen | 15513-039 | N/A |
Chloroform | J.T. Baker | 9180-03 | N/A |
Sodium Acetate | J.T. Baker | 3470-05 | 3 M stock |
Fast Green FCF | Fisher Biotech | BP123-10 | 10 % stock |
Isopropyl alcohol prep | Tyco Healthcare | 6918 | N/A |
30-guage needle | Terumo Medical Corp. | SG2-3013 | N/A |
Exmire microsyringe | Ito Corporation | MS*E05 | N/A |
Tweezertrode (tweezer electrode) | BTX Instrument, Genetronics Inc. | 522 | N/A |
Electro Square Porator (electroporator) | BTX Instrument, Genetronics Inc. | ECM 830 | N/A |
O.C.T. Compound | Sakura Finetek USA | 4583 | N/A |