Qui si descrive un metodo rapido e semplice per celle di immagine fluorescente in semi-densi fettine di cervello. Fissando, affettare, e otticamente compensazione tessuto cerebrale si descrivono le modalità standard di imaging epifluorescente o confocale può essere utilizzato per visualizzare le singole cellule e reti neuronali all'interno intatto tessuto nervoso.
Un obiettivo fondamentale sia di base e clinica delle neuroscienze è quello di comprendere meglio le identità, trucco molecolare, e modelli di connettività che sono caratteristici di neuroni nel cervello sia normale e malato. In questo senso, un grande sforzo è stato posto sulla costruzione di mappe ad alta risoluzione neuroanatomici 1-3. Con l'espansione della genetica molecolare e progressi nella microscopia luce è venuta la possibilità di interrogare non solo morfologie neuronale, ma anche la composizione molecolare e cellulare dei singoli neuroni e delle loro reti associate 4. Importanti progressi nella capacità di segnare e manipolare i neuroni attraverso le tecnologie transgeniche e gene targeting nei roditori ora consentire agli investigatori di sottoinsiemi neuronale 'programma' a volontà 5-6. Probabilmente, uno dei contributi più influenti di neuroscienza contemporanea è stata la scoperta e la clonazione di geni che codificano per proteine fluorescenti (PQ) in invertebrati marini 7-8, accanto ai loro ingegneria successive per produrre una sempre maggiore cassetta degli attrezzi di giornalisti vitale 9. Sfruttando cellula tipo-specifici promotore di attività mirate a guidare l'espressione FP in discrete popolazioni neuronali offre ora indagine neuroanatomici con precisione genetica.
Ingegneria espressione FP nei neuroni ha migliorato notevolmente la nostra comprensione della struttura del cervello e funzione. Tuttavia, i singoli neuroni imaging e le loro reti associate nei tessuti cerebrali profondi, o in tre dimensioni, è rimasta una sfida. A causa di alto contenuto di lipidi, tessuto nervoso è piuttosto opaco e auto presenta fluorescenza. Queste proprietà intrinseche biofisiche rendono difficile la visualizzazione e l'immagine neuroni fluorescente ad alta risoluzione con un microscopio confocale epifluorescente o al di là profondità di decine di micron. Per aggirare questo problema i ricercatori spesso utilizzano seriale sottile sezione imaging e metodi di ricostruzione 10, o 2-fotone microscopia a scansione laser 11. Svantaggi attuali a questi approcci sono associati alta intensità di lavoro di preparazione dei tessuti, o troppo costose strumentazioni rispettivamente.
Qui, vi presentiamo un metodo relativamente rapido e semplice per visualizzare le cellule fluorescente a fette topo fisso semi-densi cervello deselezionando ottici e di imaging. Nel protocollo allegato si descrivono i metodi di: 1) tessuto cerebrale di fissaggio in situ tramite perfusione intracardial, 2) la dissezione e la rimozione di intero cervello, 3) incorporando cervello stazionario in agarosio, 4) di precisione semi-densi preparazione fetta utilizzando nuovi strumenti vibratome compensazione, 5) il tessuto cerebrale da un gradiente di glicerolo, e 6) il montaggio su vetrini per microscopia ottica e z-stack ricostruzione (Figura 1).
Per la preparazione di fettine di cervello abbiamo implementato un pezzo relativamente nuovo di strumenti chiamato 'Compresstome' VF-200 (http://www.precisionary.com/products_vf200.html). Questo strumento è un semi-automatico microtomo dotato di un anticipo motorizzato e vibrazioni sistema blade con caratteristiche simili in funzione di vibratomes altri. A differenza di altri vibratomes, il tessuto da tagliare è montato in una spina agarosio all'interno di un cilindro di acciaio inox. Il tessuto viene estruso a spessori desiderati dal cilindro, e tagliare con la lama in avanti avanzando vibrante. La spina agarosio / sistema cilindro permette di tessuto riproducibile montaggio, allineamento e il taglio di precisione. Nelle nostre mani, il 'Compresstome' alte rese fette qualità dei tessuti per elettrofisiologia, immunoistochimica, e diretto fissa tessuto di montaggio e di imaging. In combinazione con compensazione ottica, qui abbiamo dimostrato la preparazione di semi-densi fettine di cervello fissata per imaging ad alta risoluzione fluorescenti.
Dato l'applicazione diffusa di utilizzare proteine fluorescenti a bersaglio sottoinsiemi neuronale per le indagini tramite microscopia ottica, la necessità di rapido dello schermo, l'immagine, e analizzare le reti neurali all'interno del tessuto cerebrale intatto è diventata insostituibile.
I progressi tecnici nello sviluppo di vettori virali user-friendly, nelle tecniche di elettroporazione in vivo, e ceppi di topi geneticamente modificati, off…
The authors have nothing to disclose.
Questo lavoro è stato finanziato con il sostegno attraverso la Fondazione McNair, NARSAD e NINDS concedere R00NS064171-03.
Name of the item | Company | Catalogue number | Comments (optional) |
---|---|---|---|
bone scissors | F.S.T. | 16044-10 | -or equivalent |
dissection scissors | F.S.T. | 14084-08 | -or equivalent |
type I-B agarose | Sigma | A0576 | |
Compresstome | Precisionary Instruments | VF-200 | -other vibratomes are compatible |
double sided adhesive | Grace Bio-Labs | SA-S-1L | |
Superfrost Plus slides | VWR | 48311-703 | |
Cover glass | VWR | 48383-139 | |
glycerol | EMD Chemicals Inc. | GX0185-6 | -or equivalent |