We present a protocol for bending filamentous bacterial cells attached to a cover-slip surface with an optical trap to measure the cellular bending stiffness.
Secrets to Success: In Step 8), one needs to find a cell with a well-defined stuck end. Some cells are just stuck at one tip, and the bending force at the other tip leads to a whole-cell pivoting rather than bending. A suitable pair is found by bending each cell quickly by hand using the joystick-controlled stage motion.
Representative Results:
Figure 1. This figure shows force-displacement data for a single cell. The slope of this line is the bending stiffness of the cell.
The protocol presented here is designed to quantitatively measure the bending properties of bacterial cells. The experiment setup can be applied to any rod-shaped cell that can be made to grow filamentously. We have successfully used this setup to probe the effects of cytoskeletal filaments on the bending stiffness of E. coli cells. This same technique can be used to evaluate the roles of pressure, cell wall stiffness and other intracellular components in determining overall bending stiffness of cells.
The authors have nothing to disclose.
We acknowledge helpful advice from Mingzhai Sun on binding cells to surfaces. We thank Ned Wingreen and Zemer Gitai for valuable discussions. This research was supported by National Institutes of Health grant P50GM07150, National Science Foundation CAREER award PHY-0844466 and the Alfred P. Sloan Foundation.
Material Name | Type | Company | Catalogue Number | Comment |
---|---|---|---|---|
cephalexin | Sigma | C4895-5G | ||
polyethylenimine | Sigma | 181978-5G | ||
polylysine | Sigma | P8920 | ||
0.5-μm-diameter polystyrene beads | Bangs Laboratory | PS03N | ||
Nano-LP Series nanopositioning system | Mad City Labs | NanoLP series | http://www.madcitylabs.com/nanolpseries.html |