Electrophysiological responses of olfactory sensory neurons to odorants can be measured in insects using single sensillum recordings. In this video article we will demonstrate how to perform single sensillum recordings in the antennae of the vinegar fly (Drosophila melanogaster) and the maxillary palps of the malaria mosquito (Anopheles gambiae).
The sense of smell is essential for insects to find foods, mates, predators, and oviposition sites3. Insect olfactory sensory neurons (OSNs) are enclosed in sensory hairs called sensilla, which cover the surface of olfactory organs. The surface of each sensillum is covered with tiny pores, through which odorants pass and dissolve in a fluid called sensillum lymph, which bathes the sensory dendrites of the OSNs housed in a given sensillum. The OSN dendrites express odorant receptor (OR) proteins, which in insects function as odor-gated ion channels4, 5. The interaction of odorants with ORs either increases or decreases the basal firing rate of the OSN. This neuronal activity in the form of action potentials embodies the first representation of the quality, intensity, and temporal characteristics of the odorant6, 7.
Given the easy access to these sensory hairs, it is possible to perform extracellular recordings from single OSNs by introducing a recording electrode into the sensillum lymph, while the reference electrode is placed in the lymph of the eye or body of the insect. In Drosophila, sensilla house between one and four OSNs, but each OSN typically displays a characteristic spike amplitude. Spike sorting techniques make it possible to assign spiking responses to individual OSNs. This single sensillum recording (SSR) technique monitors the difference in potential between the sensillum lymph and the reference electrode as electrical spikes that are generated by the receptor activity on OSNs1, 2, 8. Changes in the number of spikes in response to the odorant represent the cellular basis of odor coding in insects. Here, we describe the preparation method currently used in our lab to perform SSR on Drosophila melanogaster and Anopheles gambiae, and show representative traces induced by the odorants in a sensillum-specific manner.
1. Odor dilutions
2. Odor delivery system
3. Sharpening electrodes
4. Insect prep: Drosophila antenna
5. Insect prep: Anopheles maxillary palps
6. Recording Drosophila melanogaster
7. Recording Anopheles gambiae
8. Representative results
Depending on the sensillum and the quality of the recording, one can distinguish different numbers of olfactory neurons within a single trace. In the large basiconic sensilla of Drosophila melanogaster, for example, between 2 and 4 cells that differ in spike amplitude should appear during the recording 9, 10.
In our video experiment, the Drosophila ab2 sensillum shows two cells, an A cell (Figure 5, blue spikes) and a B cell (Figure 5, green spikes). Neither cell is activated during application of paraffin oil (Figure 5A), while only the A cell responds to the 10-6 dilution of methyl acetate (Figure 5B).
In the maxillary palp of Anopheles gambiae, the grooved peg sensillum contains three cells, but only two are easily discriminated (Figure 5C, blue and green spikes, respectively). In the video experiment we show how the B cell responds to a 10-7 dilution of 1-octen-3-ol (Figure 5D).
Figure 1. Electrode sharpener
(A) General view of the electrode sharpener apparatus. (B) The syringe containing 0.5 M KOH (left) used to sharpen the electrode (right). (C) Close-up of the electrode tip next to the opening of the syringe.
Figure 2. How to prepare a fly aspirator and mosquito aspirator
(A) Starting material: air line plastic tubing, two cut pipette tips, and mesh. (B) The fly aspirator once it is completed. (C) Detail of the end that is used to catch vinegar flies. (D) Detail of the other end of the fly aspirator. (E) The electric aspirator for mosquito collection consists of a main body and a detachable plastic cage. (F) The detachable plastic cage for mosquitoes.
Figure 3. Preparing a vinegar fly (Drosophila melanogaster) and a malaria mosquito (Anopheles gambiae) for recording
(A) Picture of a vinegar fly mounted on the slide before positioning it under the microscope. (B) Close-up of the vinegar fly head with the antenna kept in place by the glass capillary. (C) Picture of a mosquito mounted on the slide. (D) Close-up of the mosquito head with proboscis and palps sticking on the tape.
Figure 4. Recording from a vinegar fly (Drosophila melanogaster) and a malaria mosquito (Anopheles gambiae)
(A) View of the electrophysiology setup. (B) Close-up of the fly preparation mounted on the microscope. Notice the respective position of the recording electrode (left), the odor delivery system (middle pipette), and the recording electrode (right). (C) Image of the fly under the 10x objective. (D) Image of the fly antenna under the 100x objective; big basiconic sensilla (arrows), interspersed among non-sensory hairs (arrowheads). (E) 10x view of a mosquito mounted for recording. (F) High magnification view of the mosquito palp and a peg sensillum (arrow).
Figure 5. Examples of recordings from Drosophila melanogaster and Anopheles gambiae
(A) The ab2 sensillum of Drosophila melanogaster houses two sensory neurons; the A cell (blue spikes) and B cell (green spikes). (B) The A and B cells during application of 10-6 methyl acetate. (C) The peg sensillum of Anopheles gambiae houses two sensory neurons; the A cell (blue spikes) and B cell (green spikes). (D) Application of 10-7 1-octen-3-ol to the peg sensillum.
Olfactory cues are used by organisms to identify food sources, potential mates, and predators. Olfactory sensory neurons (OSNs) are the first relay center between external stimuli and higher centers of the brain where the information is further processed. In Drosophila melanogaster and Anopheles gambiae, OSNs are easily accessible and their electrical activity can be monitored while stimulated by odor puffs.
The single sensillum recording (SSR) technique explained in this video has been widely used to record from OSNs and study their electrical responses to a large number of odorants6, 7. The deorphanization of olfactory receptors (ORs)6, 11 and the mapping of ORs to specific locations on the Drosophila antenna9, 12, 13 has made the SSR technique a powerful tool to analyze the electrophysiological properties of specific ORs in vivo, as a first step to understand how the external olfactory world is translated into electrical signals through its OSNs and eventually perceived by the animal.
Material Name | Type | Company | Catalogue Number | Comment |
---|---|---|---|---|
Paraffin oil | Odors | Fluka | 76235 | |
High purity odors (>98%) | Odors | Sigma-Aldrich | Methyl acetate #296996 1-octen-3-ol #74950 |
|
Filter paper strips | Odors | Fisherbrand | 05-714-1 | Chromatography paper |
Connectors | Odors | Cole-Parmer | EW-06365-40 | 1/16×1/8″ |
Glass vials | Odors | Agilent Technologies | 5182-0556 | |
Air line plastic tubing | Odor Delivery | Python Products | 500PAL | |
1 serological pipette | Odor Delivery | Corning | 4101 | 10 mL |
Plastic tubing | Odor Delivery | Cole-Parmer | EW-06418-0 | 0.050″x0.090″OD |
Disposable borosilicate glass Pasteur pipettes | Odor Delivery | FisherBrand | 13-678-20A | 5-3/4 inches |
Programmable stimulus controller | Odor Delivery | Syntech | CS-55 | |
Anti-vibration table | Electrophysiology Equipment | TMC | 63533 | 36”Wx30”Dx29”H |
Faraday cage | Electrophysiology Equipment | TMC | MI8133303 | |
Inverted microscope | Electrophysiology Equipment | Nikon | E600FN ECLIPSE | Recording microscope |
10x and 100x objectives | Electrophysiology Equipment | Nikon | 10x Plan Fluor 100x L Plan | |
Dissecting microscope | Electrophysiology Equipment | Nikon | EZ645 | electrode sharpening/insect prep microscope |
Magnetic stands | Electrophysiology Equipment | Newport | MODEL 150 | |
IDAC | Electrophysiology Equipment | Syntech | IDAC-4 | |
Acquisition software | Electrophysiology Equipment | Syntech | Autospike | |
1 macromanipulator | Electrophysiology Equipment | NARISHIGE | MN-151 | Joystick manipulator Used for positioning reference electrode |
1 micromanipulator | Electrophysiology Equipment | EXFO | PCS-6000 | Used for positioning recording electrode |
Crocodile clip | Electrophysiology Equipment | Pomona | AL-B-12-0 | |
Electric cable | Electrophysiology Equipment | Pomona | B-36-0 | Test Cable Assembly |
2 electrode holders | Electrophysiology Equipment | Syntech | N/A | Electrode holders (set of 2) for tungsten wire electrode |
AC probe | Electrophysiology Equipment | Syntech | N/A | Universal single ended probe (10xAC) |
Tungsten electrodes | Electrophysiology Equipment | Microprobes | M210 | straight tungsten rods, 0.005“x3“ |
Potassium hydroxide | Electrophysiology Equipment | Sigma-Aldrich | 221473 | |
Syringe | Electrophysiology Equipment | BD | 301625 | 20 mL |
Power supply | Electrophysiology Equipment | WILD HEERBRUGG 6V 40W | e.g MTR32 | |
Vertical puller | Insect prep | Narishige | PB-7 | |
Razor blade | Insect prep | VWR | 55411-050 | |
Dental wax | Insect prep | Patterson | 091-1503 | |
Microscope slide | Insect prep | FisherBrand | 12-550A | |
Cover glass | Insect prep | FisherBrand | 12-541A | 18X18 #1.5 |
Polypropylene mesh | Insect prep | Small Parts inc. | CMP-0500-B | |
Glass electrode | Insect prep | Frederick Haer & Co. | 27-32-0-075 | Capillary tubing borosilicate 1.5mm OD x 1.12mm ID x 75 mm |
Double-sided tape (3M) | Insect prep | 3M | MMM6652P3436 | Double-sided tape (3M) |
Forceps | Insect prep | Fine Science Tools | 021×0053 | Dumont #5 Mirror Finish Forceps |
Small plastic cup | Insect prep | VWR | 89009-662 | 7 x 5.7 (23/4 x 21/4) |
Electric aspirator | Insect prep | Gempler’s | RHM200 |