このプロトコルは、リアルタイムで個々のreplisomesによってDNA複製を視覚化するためのシンプルな単一分子蛍光顕微鏡の技法を示しています。
我々は、単一分子レベルでのDNA複製を観察するためのシンプルな蛍光顕微鏡ベースのリアルタイム方法を説明します。環状、分岐したDNAテンプレートは、官能ガラスのカバースリップに結合し、複製タンパク質とヌクレオチド(図1)の導入後に広範囲に複製されます。成長している製品の二本鎖DNA(dsDNAが)層流で拡張し、インターカレート色素を用いて可視化される。リアルタイムで成長しているDNAの端の位置を測定することにより、レプリケーションの速度(図2)を正確に決定することができます。さらに、完成したDNA産物の長さは複製のprocessivityに報告します。この実験は非常に容易かつ迅速に実施し、合理的に高感度カメラでのみ蛍光顕微鏡を必要とすることができます。
一つの重要な制御は、関心の複製蛋白質で、汚れ、SYTOXオレンジの効果を検討している。これを行う簡単な方法は、前述のようにフローセルではなくSYTOXの省略を使用したレプリケーションの実験を行うことです。反応混合物は、チャンバを通って流入した後、DNAを染色し、複製された分子の長さの分布を調べるためにSYTOXでバッファを追加します。また、標準的なバルクの反応は、レプリケーションの速度と効率上SYTOXの任意の効果を確認するために使用することができます。
ここで説明する実験は、単一の流路を使用しています。これは、マルチチャネルのフローチャンバーを作成またはPDMSまたは類似のマイクロ流体デバイスを用いて容易に変更することができます。チャネルの数を増やすと、大幅にタンパク質濃度、変異体、または阻害剤の分子のスクリーニングを容易にし、レプリケーションデータ収集の迅速性を向上させます。
前述のとおり、我々はE.を行います37 大腸菌の複製実験° C、自作アルミフローセルのヒーター、抵抗加熱要素(カートリッジヒーター)と可変電源を使用する。これにより、良好な温度安定性を与え、客観的なヒーターの購入を避けることができます。ヒーターを校正するために、我々は、単に、石英フローセルの上部の中央に穴をあけ流路に熱電対を挿入し、通常どおりバッファを流れた。増加する電圧でフローセルのバッファの温度を測定することは、正確な加熱が可能になります。
サミールハムダンは、この技術の開発に支援。E.を大腸菌のタンパク質は、教授ニックディクソンの研究室からウーロンゴン大学であり、T7タンパク質は、教授チャールズリチャードソン、ハーバードメディカルスクールからです。作品は、国立衛生研究所(AMvOにGM077248)とジェーン棺チャイルズ財団(JJL)によってサポートされています。
Material Name | Type | Company | Catalogue Number | Comment |
---|---|---|---|---|
M13mp18 ssDNA | New England Biolabs | N4040 | ||
Biotinylated Tail Oligo | Integrated DNA Technologies | |||
T7 DNA Polymerase | New England Biolabs | M0274 | Use T7 replication buffer for substrate preparation | |
Phenol/ Isoamyl Alcohol/ Chloroform | Roche | 03117987001 | 24:24:1 v/v | |
3-aminopropyl-triethoxysilane | Sigma | A3648 | Other aminosilanes can be used or mixed with non-amine reactive silanes for sparser surfaces | |
Succinimidyl propionate PEG | Nektar | Similar PEGs can be purchased from Nanocs, CreativePEGWorks, etc. | ||
Biotin-PEG-NHS | Nektar | |||
Double-sided tape | Grace BioLabs | SA-S-1L | 100 μm thickness | |
Quartz slide | Technical Glass | 20 mm (W)x 50 mm (L)x 1mm (H) |
Size to fit on coverslips. Drill holes with diamond-tip drill bits (DiamondBurs.net) | |
Polyethylene tubing | Becton Dickinson | 427416 | 0.76 mm ID, 1.22 OD Other size tubing can be substituted. |
|
Streptavidin | Sigma | S4762 | Make 1 mg/mL solution, 25 μL aliquots in PBS pH 7.3 | |
Deoxyribonucleotide triphosphate solution mix | New England Biolabs | N0447 | ||
Ribonucleotide triphosphate solutions | Amersham | 272056 272066 272076 272086 |
||
SYTOX Orange | Invitrogen | S11368 | Other dsDNA stain can be used | |
Fluorescence Microscope with 60x TIRF objective | Olympus | IX-71 | Microscope, camera, etc. can be substituted for similar equipment | |
Syringe Pump | Harvard Apparatus | 11 Plus | Operate in refill mode to facilitate solution changes | |
532 nm laser | Coherent | Compass 215M-75 | Select wavelength to correspond to stain of choice | |
EMCCD Camera | Hamamatsu | ImagEM | ||
Emission filter | Chroma | HQ600/75m |
T7 Replication: 40 mM Tris pH 7.5, 50 mM potassium glutamate, 10 mM magnesium chloride, 100 μg/mL BSA, with 5 mM dithiothreitol, 600 μM dNTPs, 300 μM ATP, 300 μM CTP, and 15 nM SYTOX Orange added immediately before use. Proteins added as: 5 nM gp4 (hexamer), 40 nM polymerase (1:1 gp5: thioredoxin), 360 nm gp2.51,5.
E. coli Replication: 50 mM HEPES pH 7.9, 12 mM magnesium acetate, 80 mM potassium chloride, 100 μg/mL BSA with 10 mM dithiothreitol, 40 μM dNTPs, 200 μM rNTPs, and 15 nM SYTOX Orange added immediately before use. Proteins added as: 30 nM DnaB (hexamer), 180 nM DnaC (monomer), 30 nM αεθ, 15 nM τ2γ1δδ’χψ or τ3δδ’χψ, 30 nM β (dimer), 300 nM DnaG, 250 nM SSB (tetramer), 20 nM PriA, 40 nM PriB, 320 nM PriC, 480 nM DnaT1,6