Summary

志贺氏菌上皮细胞感染分析

Published: February 09, 2024
doi:

Summary

本方案描述了使用体外上皮细胞系询问志贺氏菌粘附、侵袭和细胞内复制的感染测定。

Abstract

人类适应的肠道细菌病原体志贺氏菌每年引起数百万例感染,在儿科患者中产生长期生长效应,并且是全球腹泻死亡的主要原因。由于病原体通过胃肠道并感染结肠内壁的上皮细胞,感染会引起水样或血性腹泻。随着抗生素耐药性的惊人增加和目前缺乏批准的疫苗,标准化的研究方案对于研究这种可怕的病原体至关重要。在这里,提出了使用结肠上皮细胞中细菌粘附、侵袭和细胞内复制的体外分析来检查志贺氏菌分子发病机制的方法。在感染分析之前,志贺氏菌菌落的毒力表型通过在琼脂平板上摄取刚果红染料来验证。在细菌培养过程中,也可以考虑使用补充的实验室培养基来模拟体内条件。然后,在标准化方案中使用细菌细胞,以已建立的感染多重感染感染组织培养板中的结肠上皮细胞,并适应分析感染的每个阶段。对于依从性测定,志贺氏菌细胞与降低的培养基水平一起孵育,以促进细菌与上皮细胞的接触。对于侵袭和细胞内复制测定,庆大霉素应用于不同的时间间隔,以消除细胞外细菌并能够评估侵袭和/或细胞内复制速率的定量。所有感染方案都通过连续稀释受感染的上皮细胞裂解物并相对于感染滴度在刚果红琼脂平板上铺板细菌集落形成单位来枚举贴壁、侵袭和/或细胞内细菌。总之,这些方案能够对上皮细胞志贺氏菌感染的每个阶段进行独立的表征和比较,以成功研究这种病原体。

Introduction

由肠道细菌病原体引起的腹泻病是全球卫生的重大负担。2016 年,腹泻病导致全球 130 万人死亡,是 5 岁以下儿童的第四大死因 1,2。革兰氏阴性肠道细菌病原体志贺氏菌是志贺氏菌病的病原体,志贺氏菌病是全球腹泻死亡的主要原因3。志贺菌病每年在低收入和中等收入国家的儿童中造成严重的发病率和死亡率4,5,而高收入国家的感染与日托中心、食源性和水源性疫情有关6,7,8,9无效的疫苗开发10和抗微生物药物耐药性(AMR)11,12的上升使大规模志贺氏菌疫情的管理变得复杂。美国疾病控制与预防中心最近的数据显示,2020 年美国近 46% 的志贺氏菌感染表现出耐药性13,14,而世界卫生组织已宣布志贺氏菌为 AMR 优先病原体,迫切需要新疗法15

志贺氏菌感染在摄入受污染的食物或水后,或通过直接与人接触,很容易通过粪口途径传播。志贺氏菌已进化为一种有效的、适应人类的病原体,其感染剂量为 10-100 种细菌,足以引起疾病16。在小肠转运过程中,志贺氏菌暴露于环境信号,例如高温和胆汁17。检测这些信号可诱导转录变化以表达毒力因子,从而增强细菌感染人结肠的能力 17,18,19。志贺氏菌不会从顶端表面侵入结肠上皮,而是在被滤泡相关上皮细胞内特化的抗原呈递微折叠细胞(M 细胞)摄取后穿过上皮层202122。转胞吞作用后,志贺氏菌细胞被驻留巨噬细胞吞噬。志贺氏菌迅速逃离吞噬体并触发巨噬细胞死亡,导致促炎细胞因子的释放 5,23,24然后志贺氏菌从基底外侧侵入结肠上皮细胞,裂解巨细胞液泡,并在细胞质中建立复制生态位 5,25。促炎细胞因子,特别是白细胞介素-8 (IL-8),将多形核中性粒细胞白细胞 (PMN) 募集到感染部位,从而削弱上皮紧密连接,并使细菌浸润上皮内膜以加剧基底外侧感染5。PMN 破坏受感染的上皮内膜以控制感染,从而导致细菌性(血性)痢疾的特征性症状5。尽管侵袭和细胞内复制机制已被彻底表征,但新的研究正在证明志贺氏菌感染的重要新概念,包括胃肠道 (GI) 转运期间的毒力调节17、依从性19、通过屏障通透性改善基底外侧通路26 和营养不良儿童的无症状携带27

志贺氏菌属引起腹泻病的能力仅限于人类和非人灵长类动物 (NHP)28。已经为斑马鱼29、小鼠30、豚鼠31、兔子213233 和猪3435 开发了志贺氏菌肠道感染模型。然而,这些模型系统都不能准确复制人类感染期间观察到的疾病特征36。尽管已经建立了志贺氏菌病的非人灵长类模型来研究志贺氏菌的发病机制,但这些模型系统的实施成本高昂,并且需要人为的高感染剂量,比人类的感染剂量高出9个数量级37,38,39,40,41,42。因此,志贺氏菌对人类宿主感染的显着适应需要使用人源性细胞培养物来重建生理相关模型,以准确询问志贺氏菌的发病机制。

在这里,描述了详细的程序,以测量 志贺氏菌 对 HT-29 结肠上皮细胞的粘附、侵袭和复制率。使用这些标准化方案,可以研究细菌毒力基因和环境信号影响 志贺氏菌 感染每一步的分子机制,以更好地了解动态宿主-病原体相互作用关系。

Protocol

1.试剂和材料的制备 注意:所有体积均与使用两个 6 孔板的测定一致。 TSB 培养基:将 0.5 L 去离子 (DI) 水加入 15 g 胰蛋白酶大豆肉汤(TSB,参见 材料表)培养基和高压灭菌器中。在室温下储存。 胆汁盐培养基(TSB + BS):要制备含有0.4%(w/v)胆汁盐的TSB,将0.06g胆盐(BS,参见 材料表)重悬于15mL高压灭菌的TSB中。使用0…

Representative Results

将 S. flexneri 2457T 野生型 (WT) 与 S. flexneri ΔVF (ΔVF) 进行比较,后者是一种假设负调节志贺氏菌毒力的突变体。由于志贺氏菌使用胆盐作为调节毒力的信号17,18,47,因此在TSB培养基中的细菌传代培养以及补充有0.4%(w/v)胆盐的TSB中进行实验18。在传代培养步骤中暴露胆汁盐…

Discussion

该方案描述了一组三种标准化测定法,用于研究志贺氏菌的粘附,侵袭和肠上皮细胞的细胞内复制。尽管这些方法只是用于研究宿主细胞内各种细菌病原体的侵袭和细胞内复制的经典庆大霉素测定法的改进版本49,50,51,但在研究志贺氏菌时必须特别考虑。

志贺氏菌是兼性厌氧菌,在37°C…

Declarações

The authors have nothing to disclose.

Acknowledgements

对作者的支持包括马萨诸塞州总医院儿科、研究临时支持基金执行委员会 (ISF) 奖 2022A009041、美国国家过敏和传染病研究所资助 R21AI146405 以及美国国家糖尿病、消化和肾脏疾病研究所资助哈佛大学营养肥胖研究中心 (NORCH) 2P30DK040561-26。资助者在研究设计、数据收集和分析、发表决定或手稿准备方面没有任何作用。

Materials

0.22 μm PES filter Millipore-Sigma SCGP00525 Sterile, polyethersulfone filter for sterilizing up to 50 mL media
14 mL culture tubes Corning 352059 17 mm x 100 mm polypropylene test tubes with cap
50 mL conical tubes Corning 430829 50 mL clear polypropylene conical bottom centrifuge tubes with leak-proof cap
6-well tissue culture plates Corning 3516 Plates are treated for optimal cell attachment
Bile salts Sigma-Aldrich B8756 1:1 ratio of cholate to deoxycholate
Congo red dye Sigma-Aldrich C6277 A benzidine-based anionic diazo dye, >85% purity
Countess cell counting chamber slide Invitrogen C10283 To be used with the Countess Automated Cell Counter
Dimethyl sulfoxide (DMSO) Sigma-Aldrich D8418 A a highly polar organic reagent
Dulbecco’s Modified Eagle Medium (DMEM) Gibco 10569-010 DMEM is supplemented with high glucose, sodium pyruvate, GlutaMAX, and Phenol Red
Fetal Bovine Serum (FBS) Sigma-Aldrich F4135 Heat-inactivated, sterile
Gentamicin Sigma-Aldrich G3632 Stock concentration is 50 mg/mL
HT-29 cell line ATCC HTB-38 Adenocarcinoma cell line; colorectal in origin
Paraffin film Bemis PM999 Laboratory sealing film
Petri dishes Thermo Fisher Scientific FB0875713 100 mm x 15 mm Petri dishes for solid media
Phosphate-buffered saline (PBS) Thermo Fisher Scientific 10010049 1x concentration; pH 7.4
Select agar Invitrogen 30391023 A mixture of polysaccharides extracted from red seaweed cell walls to make bacterial plating media
T75 flasks Corning 430641U Tissue culture flasks
Triton X-100 Sigma-Aldrich T8787 A common non-ionic surfactant and emulsifier 
Trypan blue stain Invitrogen T10282 A dye to detect dead tissue culture cells; only live cells can exclude the dye
Trypsin-EDTA Gibco 25200-056 Reagent for cell dissociation for cell line maintenance and passaging
Tryptic Soy Broth (TSB) Sigma-Aldrich T8907 Bacterial growth media

Referências

  1. Karambizi, N. U., McMahan, C. S., Blue, C. N., Temesvari, L. A. Global estimated Disability-Adjusted Life-Years (DALYs) of diarrheal diseases: A systematic analysis of data from 28 years of the global burden of disease study. PloS one. 16 (10), e0259077 (2021).
  2. WHO. WHO methods and data sources for country-level causes of death 2000-2016. World Health Organization. , (2018).
  3. Kotloff, K. L. Shigella infection in children and adults: a formidable foe. Lancet Glob Health. 5 (12), e1166-e1167 (2017).
  4. Kotloff, K. L., et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet. 382 (9888), 209-222 (2013).
  5. Schroeder, G. N., Hilbi, H. Molecular pathogenesis of Shigella spp.: Controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev. 21 (1), 134-156 (2008).
  6. Arvelo, W., et al. Transmission risk factors and treatment of pediatric shigellosis during a large daycare center-associated outbreak of multidrug resistant shigella sonnei: Implications for the management of shigellosis outbreaks among children. Pediatr Infect Dis J. 28 (11), 976-980 (2009).
  7. Kozyreva, V. K., et al. Recent outbreaks of Shigellosis in California caused by two distinct populations of Shigella sonnei with either increased virulence or fluoroquinolone resistance. mSphere. 1 (6), 1-18 (2016).
  8. Bowen, A., et al. Importation and domestic transmission of Shigella sonnei resistant to ciprofloxacin – United States, May 2014-February 2015. MMWR Morb Mortal Wkly Rep. 64 (12), 318-320 (2015).
  9. Tansarli, G. S., et al. Genomic reconstruction and directed interventions in a multidrug-resistant Shigellosis outbreak in Seattle, WA, USA: a genomic surveillance study. Lancet. 3099 (22), 1-11 (2023).
  10. Barry, E. M., et al. Progress and pitfalls in Shigella vaccine research. Nat Rev Gastroenterol Hepatol. 10 (4), 245-255 (2013).
  11. Increase in Extensively Drug-Resistant Shigellosis in the United States. CDC Health Alert Network. Centers for Disease Control and Prevention Available from: https://emergency.cdc.gov/han/2023/han00486.asp?ACSTrackingID=USCDC_511-DM100260&ACSTrackingLabel=HAN%20486%20-%20General%20Public&deliveryName=USCDC_511-DM100260 (2023)
  12. Shiferaw, B., et al. Antimicrobial susceptibility patterns of Shigella isolates in Foodborne Diseases Active Surveillance Network (FoodNet) sites, 2000-2010. Clin Infect Dis. 54, S458-S463 (2012).
  13. Centers for Disease Control and Prevention. COVID-19: U.S. Impact on Antimicrobial Resistance, Special Report 2022. Atlanta, GA: U.S. Department of Health and Human Services. CDC. , (2022).
  14. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2019. CDC. 10 (1), (2019).
  15. WHO. Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. WHO. , (2017).
  16. DuPont, H. L., Levine, M. M., Hornick, R. B., Formal, S. B. Inoculum size in shigellosis and implications for expected mode of transmission. J Infect Dis. 159 (6), 1126-1128 (1989).
  17. Nickerson, K. P., et al. Analysis of Shigella flexneri resistance, biofilm formation, and transcriptional profile in response to bile salts. Infect Immun. 85 (6), 1-18 (2017).
  18. Faherty, C. S., Redman, J. C., Rasko, D. A. Shigella flexneri effectors OspE1 and OspE2 mediate induced adherence to the colonic epithelium following bile salts exposure. Mol Microbiol. 85 (1), 107-121 (2012).
  19. Chanin, R. B., et al. Shigella flexneri adherence factor expression in in vivo-like conditions. mSphere. 4 (6), e00751 (2019).
  20. Baranov, V., Hammarström, S. Carcinoembryonic antigen (CEA) and CEA-related cell adhesion molecule 1 (CEACAM1), apically expressed on human colonic M cells, are potential receptors for microbial adhesion. Histochem Cell Biol. 121 (2), 83-89 (2004).
  21. Wassef, J. S., Keren, D. F., Mailloux, J. L. Role of M cells in initial antigen uptake and in ulcer formation in the rabbit intestinal loop model of shigellosis. Infect Immun. 57 (3), 858-863 (1989).
  22. Sansonetti, P. J., Arondel, J., Cantey, J. R., Prévost, M. C., Huerre, M. Infection of rabbit Peyer’s patches by Shigella flexneri: Effect of adhesive or invasive bacterial phenotypes on follicle-associated epithelium. Infect Immun. 64 (7), 2752-2764 (1996).
  23. Sansonetti, P. J., et al. Caspase-1 activation of IL-1beta and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity. 12 (5), 581-590 (2000).
  24. Zychlinsky, A., Fitting, C., Cavaillon, J. M., Sansonetti, P. J. Interleukin 1 is released by murine macrophages during apoptosis induced by Shigella flexneri. J Clin Invest. 94 (3), 1328-1332 (1994).
  25. Sansonetti, P. J., Ryter, A., Clerc, P., Maurelli, A. T., Mounier, J. Multiplication of Shigella flexneri within HeLa cells: lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis. Infect Immun. 51 (2), 461-469 (1986).
  26. Maldonado-Contreras, A., et al. Shigella depends on SepA to destabilize the intestinal epithelial integrity via cofilin activation. Gut Microbes. 8 (6), 544-560 (2017).
  27. Collard, J. -. M., et al. High prevalence of small intestine bacteria overgrowth and asymptomatic carriage of enteric pathogens in stunted children in Antananarivo, Madagascar. PLoS Negl Trop Dis. 16 (5), e0009849 (2022).
  28. Mattock, E., Blocker, A. J. How do the virulence factors of shigella work together to cause disease. Front Cell Infect Microbiol. 7, 1-24 (2017).
  29. Mostowy, S., et al. The zebrafish as a new model for the in vivo study of Shigella flexneri interaction with phagocytes and bacterial autophagy. PLoS Pathog. 9 (9), e1003588 (2013).
  30. Martinez-Becerra, F. J., et al. Parenteral immunization with IpaB/IpaD protects mice against lethal pulmonary infection by Shigella. Vaccine. 31 (24), 2667-2672 (2013).
  31. Shim, D. -. H., et al. New animal model of shigellosis in the Guinea pig: its usefulness for protective efficacy studies. J Immunol. 178 (4), 2476-2482 (2007).
  32. Marteyn, B., et al. Modulation of Shigella virulence in response to available oxygen in vivo. Nature. 465 (7296), 355-358 (2010).
  33. West, N. P., et al. Optimization of virulence functions through glucosylation of Shigella LPS. Science. 307 (5713), 1313-1317 (2005).
  34. Maurelli, A. T., et al. Shigella infection as observed in the experimentally inoculated domestic pig, Sus scrofa domestica. Microbial Pathog. 25 (4), 189-196 (1998).
  35. Jeong, K. -. I., Zhang, Q., Nunnari, J., Tzipori, S. A piglet model of acute gastroenteritis induced by Shigella dysenteriae Type 1. J Infect Dis. 201 (6), 903-911 (2010).
  36. Kim, Y. -. J., Yeo, S. -. G., Park, J. -. H., Ko, H. -. J. Shigella vaccine development: prospective animal models and current status. Curr Pharm Biotechnol. 14 (10), 903-912 (2013).
  37. Kent, T. H., Formal, S. B., LaBrec, E. H., Sprinz, H., Maenza, R. M. Gastric shigellosis in rhesus monkeys. Am J Pathol. 51 (2), 259-267 (1967).
  38. Shipley, S. T., et al. A challenge model for Shigella dysenteriae 1 in cynomolgus monkeys (Macaca fascicularis). Comp Med. 60 (1), 54-61 (2010).
  39. Higgins, R., Sauvageau, R., Bonin, P. Shigella flexneri Type 2 Infection in captive nonhuman primates. Can Vet J. 26 (12), 402-403 (1985).
  40. Oaks, E. V., Hale, T. L., Formal, S. B. Serum immune response to Shigella protein antigens in rhesus monkeys and humans infected with Shigella spp. Infect Immun. 53 (1), 57-63 (1986).
  41. Formal, S. B., et al. Protection of monkeys against experimental shigellosis with a living attenuated oral polyvalent dysentery vaccine. J Bacteriol. 92 (1), 17-22 (1966).
  42. Levine, M. M., Kotloff, K. L., Barry, E. M., Pasetti, M. F., Sztein, M. B. Clinical trials of Shigella vaccines: two steps forward and one step back on a long, hard road. Nat Rev Microbiol. 5 (7), 540-553 (2007).
  43. Payne, S. M. Laboratory cultivation and storage of Shigella. Curr Protoc Microbiol. 55 (1), 93 (2019).
  44. NIH Guidelines. NIH guidelines for research involving recombinant or synthetic nucleic acid molecules. NIH Guidelines. 2, 142 (2019).
  45. Maurelli, A. T., Blackmon, B., Curtiss, R. Loss of pigmentation in Shigella flexneri 2a is correlated with loss of virulence and virulence-associated plasmid. Infect Immun. 43 (1), 397-401 (1984).
  46. HT-29 cell line product sheet. ATCC Available from: https://www.atcc.org/products/htb-38 (2023)
  47. Sistrunk, J. R., Nickerson, K. P., Chanin, R. B., Rasko, D. A., Faherty, C. S. Survival of the fittest: How bacterial pathogens utilize bile to enhance infection. Clin Microbiol Rev. 29 (4), 819-836 (2016).
  48. Stensrud, K. F., et al. Deoxycholate interacts with IpaD of Shigella flexneri in inducing the recruitment of IpaB to the type III secretion apparatus needle tip. J Biol Chem. 283 (27), 18646-18654 (2008).
  49. Mandell, G. L. Interaction of intraleukocytic bacteria and antibiotics. J Clin Invest. 52 (7), 1673-1679 (1973).
  50. Elsinghorst, E. A. Measurement of invasion by gentamicin resistance. Methods Enzymo. 236 (1979), 405-420 (1994).
  51. Elsinghorst, E. A., Weitz, J. A. Epithelial cell invasion and adherence directed by the enterotoxigenic Escherichia coli tib locus is associated with a 104-kilodalton outer membrane protein. Infect Immun. 62 (8), 3463-3471 (1994).
  52. Dorman, C. J., McKenna, S., Beloin, C. Regulation of virulence gene expression in Shigella flexneri, a facultative intracellular pathogen. Int J Med Microbiol. 291 (2), 89-96 (2001).
  53. Porter, M. E., Dorman, C. J. Positive regulation of Shigella flexneri virulence genes by integration host factor. J Bacteriol. 179 (21), 6537-6550 (1997).
  54. Maurelli, A. T., Blackmon, B., Curtiss, R. Temperature-dependent expression of virulence genes in Shigella species. Infect Immun. 43 (1), 195-201 (1984).
  55. Schuch, R., Maurelli, A. T. Virulence plasmid instability in Shigella flexneri 2a is induced by virulence gene expression. Infect Immun. 65 (9), 3686-3692 (1997).
  56. Formal, S. B., Hale, T. L., Sansonetti, P. J. Invasive enteric pathogens. Rev Infect Dis. 5, S702-S707 (1983).
  57. Pál, T., Hale, T. L. Plasmid-associated adherence of Shigella flexneri in a HeLa cell model. Infect Immun. 57 (8), 2580-2582 (1989).
  58. Noben, M., et al. Human intestinal epithelium in a dish: Current models for research into gastrointestinal pathophysiology. United European Gastroenterol J. 5 (8), 1073-1081 (2017).
  59. Liévin-Le Moal, V., Servin, A. L. Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev R. 77 (3), 380-439 (2013).
  60. Mitchell, D. M., Ball, J. M. Characterization of a spontaneously polarizing HT-29 cell line, HT-29/cl.f8. In Vitro Cell Dev Biol – Anim. 40 (10), 297-302 (2004).
  61. Gagnon, M., Zihler Berner, A., Chervet, N., Chassard, C., Lacroix, C. Comparison of the Caco-2, HT-29 and the mucus-secreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion. J Microbiol Methods. 94 (3), 274-279 (2013).
  62. Koestler, B. J., et al. Human intestinal enteroids as a model system of Shigella pathogenesis. Infect Immun. 87 (4), 00733 (2019).
  63. Ranganathan, S., et al. Evaluating Shigella flexneri pathogenesis in the human enteroid model. Infect Immun. 87 (4), (2019).
  64. Nickerson, K. P., et al. A versatile human intestinal organoid-derived epithelial monolayer model for the study of enteric pathogens. Microbiol Spectr. 9 (1), 1-17 (2021).
  65. Perlman, M., Senger, S., Verma, S., Carey, J., Faherty, C. S. A foundational approach to culture and analyze malnourished organoids. Gut Microbes. 15 (2), 2248713 (2023).
  66. Pope, L. M., Reed, K. E., Payne, S. M. Increased protein secretion and adherence to HeLa cells by Shigella spp. following growth in the presence of bile salts. Infect Immun. 63 (9), 3642-3648 (1995).
  67. Faherty, C. S., et al. The synthesis of OspD3 (ShET2) in Shigella flexneri is independent of OspC1. Gut Microbes. 7 (6), 486-502 (2016).
  68. Ridlon, J. M., Kang, D. -. J., Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 47 (2), 241-259 (2006).
  69. Köseoğlu, V. K., Hall, C. P., Rodríguez-López, E. M., Agaisse, H. The Autotransporter IcsA promotes Shigella flexneri biofilm formation in the presence of bile salts. Infect Immun. 87 (7), 1-14 (2019).

Play Video

Citar este artigo
Poore, K., Lenneman, B. R., Faherty, C. S. Epithelial Cell Infection Analyses with Shigella. J. Vis. Exp. (204), e66426, doi:10.3791/66426 (2024).

View Video