Qui viene presentata la fabbricazione di un dispositivo a doppio strato basato su polidimetilsilossano (PDMS) per la produzione di librerie combinatorie in emulsioni acqua-in-olio (tappi). L’hardware e il software necessari per automatizzare la produzione di tappi sono dettagliati nel protocollo e viene dimostrata anche la produzione di una libreria quantitativa di tappi fluorescenti.
La microfluidica a gocce è uno strumento versatile che consente l’esecuzione di un gran numero di reazioni in compartimenti nanolitari chimicamente distinti. Tali sistemi sono stati utilizzati per incapsulare una varietà di reazioni biochimiche, dall’incubazione di singole cellule all’implementazione di reazioni PCR, dalla genomica alla sintesi chimica. L’accoppiamento dei canali microfluidici con valvole di regolazione consente il controllo della loro apertura e chiusura, consentendo così la rapida produzione di librerie combinatorie su larga scala costituite da una popolazione di goccioline con composizioni uniche. In questo documento vengono presentati i protocolli per la fabbricazione e il funzionamento di un dispositivo microfluidico a doppio strato basato su PDMS guidato dalla pressione che può essere utilizzato per generare librerie combinatorie di emulsioni acqua-in-olio chiamate tappi. Incorporando programmi software e hardware microfluidico, il flusso dei fluidi desiderati nel dispositivo può essere controllato e manipolato per generare librerie di tappi combinatoriali e per controllare la composizione e la quantità delle popolazioni di tappi costituenti. Questi protocolli accelereranno il processo di generazione di screening combinatori, in particolare per studiare la risposta ai farmaci nelle cellule delle biopsie dei pazienti oncologici.
La microfluidica consente la manipolazione di piccole quantità di fluidi in microcanali1. La scala di funzionamento dei tipici dispositivi microfluidici è di decine o centinaia di micrometri, il che consente la miniaturizzazione delle reazioni chimiche e biologiche, consentendo così di eseguire tali reazioni con quantità relativamente piccole di reagenti. Inizialmente, i dispositivi microfluidici sono stati fabbricati con materiali come il silicio2 e il vetro3. Sebbene siano ancora in uso4, pongono alcuni problemi, come la compatibilità con i solventi, l’alto costo di produzione e le difficoltà nell’integrazione dei controlli per il flusso del fluido 5,6. Le metodologie di fabbricazione basate su PDMS, denominate soft-lithography, offrono un’alternativa economica per la prototipazione rapida di dispositivi7 e una strada per fabbricare dispositivi multistrato complessi8. L’aggiunta di valvole e pompe ai dispositivi PDMS consente di controllare il percorso e la velocità dei fluidi nei dispositivi 9,10. Sono stati sviluppati diversi metodi per progettare e azionare le microvalvole in modo reversibile o irreversibile, ad esempio valvole bimetalliche in silicio e alluminio, che vengono azionate termicamente11 o utilizzando gas generato da una reazione elettrochimica per deviare una membrana in nitruro di silicio12. Gu et al. dimostrano l’uso dei pin meccanici di un display Braille per applicare pressione sui microcanali per regolare il flusso13. Un set di microvalvole che ha guadagnato popolarità sono le valvole pneumatiche basate su PDMS introdotte dal gruppo di Stephen Quake14. Tipicamente, tali valvole sono composte da due microcanali ortogonali: un canale di flusso e un canale di controllo. Dopo la pressurizzazione del canale di controllo, una sottile membrana PDMS devia sul canale di flusso, chiudendolo e interrompendo così il flusso del fluido. Una volta depressurizzata, la membrana si rilassa, aprendo così il canale di flusso e consentendo la ripresa del flusso del fluido. Le valvole PDMS consentono quindi la regolazione del flusso in modo robusto e reversibile, poiché il canale di controllo può essere pressurizzato e depressurizzato più volte15. Inoltre, poiché tali valvole possono essere azionate mediante l’applicazione di pressione, aprono strade per il controllo digitale e l’automazione16. Inoltre, poiché sono dello stesso materiale, possono essere integrati senza soluzione di continuità nella fabbricazione di dispositivi basati su PDMS utilizzando tecniche di litografia morbida 8,17,18. Queste caratteristiche rendono le valvole PDMS una scelta interessante per la regolazione del flusso nei dispositivi microfluidici. Thorsen et al. hanno utilizzato il principio di tali valvole per progettare un multiplexer fluidico – una serie combinatoria di valvole pneumatiche – per indirizzare quasi un migliaio di canali di flusso in ingresso con venti canali di controllo19. Questo principio è stato esteso per instradare selettivamente i fluidi ai chemostati microfluidici in-chip in modo che reazioni uniche possano essere eseguite simultaneamente in ciascun reattore 20,21,22,23. Tuttavia, tali microreattori, sebbene utili per ottimizzare l’uso di reagenti limitati, non possono parallelizzare reazioni multiple e non sono sufficienti per studi ad alto rendimento.
La microfluidica delle goccioline è una sottocategoria della microfluidica che prevede la produzione di goccioline attraverso la manipolazione del flusso di liquido immiscibile e multifasico in dispositivi microfluidici24. La formazione di goccioline comporta la rottura di un fluido continuo mediante l’introduzione di un fluido immiscibile, con conseguente pinch-off dovuto all’instabilità dell’energia interfacciale e alla formazione di un’emulsione25. I tensioattivi aiutano nella formazione di goccioline arrotondate quando le emulsioni lasciano il microcanale stabilizzando le energie interfacciali26. Le goccioline più grandi, chiamate tappi, sono meno stabili e possono essere raccolte in un compartimento di contenimento (come un pezzo di tubo) come una serie di compartimenti acquosi distanziati su entrambi i lati da uno o più liquidi immiscibili27. Oltre alla miniaturizzazione e alla compartimentazione, la microfluidica delle goccioline offre anche una maggiore produttività delle reazioni biologiche, poiché è possibile produrre un gran numero di goccioline monodisperse, ciascuna delle quali funge da nanoreattore28. Le goccioline, una volta generate, possono anche essere sottoposte a ulteriori manipolazioni, come la scissione29,30, la fusione31,32, lo smistamento33,34 e l’assemblaggio in strutture di ordine superiore35,36. La microfluidica a gocce ha rivoluzionato diversi campi e tecnologie scientifiche: dalla PCR37 alla trascrittomica a singola cellula38, dalla scoperta di farmaci39,40 alla virologia41, dal sequenziamento di nuova generazione42 alla sintesi chimica43.
L’integrazione della litografia morbida basata su PDMS e delle microvalvole con la tecnologia delle goccioline è una potente combinazione che consente la regolazione del flusso del fluido nei microcanali e il successivo controllo del contenuto delle goccioline. A seconda dell’apertura e della chiusura dei canali, è possibile produrre popolazioni distinte di goccioline, ciascuna con una composizione specifica. Tale piattaforma potrebbe miniaturizzare, compartimentalizzare e parallelizzare le reazioni biochimiche e quindi essere una tecnica utile per lo screening combinatorio44. Lo screening combinatorio è un metodo ad alto rendimento per generare decine di migliaia di combinazioni di reagenti selezionati per produrre librerie costituite da singole popolazioni di composizione nota. Lo screening combinatorio è stato utilizzato per scoprire effetti sinergici tra farmaci e antibiotici per l’inibizione della crescita batterica45. Nel campo della terapia del cancro, lo screening combinatoriale è stato utilizzato per testare combinazioni di farmaci antitumorali per un determinato paziente, facendo così progredire la terapia personalizzata46,47. Mathur et al. hanno sviluppato questa tecnologia integrando un approccio combinatorio di codifica a barre del DNA per valutare i cambiamenti del trascrittoma nello screening dei farmaci ad alto rendimento48. Pertanto, lo screening combinatorio è una tecnologia potente ma nascente e vi è la necessità di sviluppare diverse tecnologie microfluidiche per eseguire e facilitare tali procedure di screening.
L’obiettivo di questo manoscritto è quello di presentare un set completo di protocolli per la fabbricazione di un dispositivo microfluidico a doppio strato in grado di generare una libreria combinatoria di tappi acqua-in-olio e descrivere l’hardware e il software necessari per il funzionamento di tale dispositivo. Il flusso del fluido è regolato tramite valvole pneumatiche basate su PDMS a pressione controllata, a loro volta controllate da un programma LabVIEW personalizzato. Il flusso di reagenti nel dispositivo si ottiene utilizzando pompe a pressione disponibili in commercio. Viene presentato un prototipo a otto ingressi in cui un tappo è formato dal contenuto di tre ingressi, ciascuno contenente un reagente acquoso. La fase acquosa incontra una fase oleosa continua e le spine sono prodotte a una giunzione a T con una frequenza di 0,33 Hz. Il funzionamento del sistema è dimostrato producendo una libreria quantitativa contenente tre distinte popolazioni di candele fluorescenti. Questa tecnologia e questo insieme di protocolli contribuiranno ad accelerare la produzione di librerie combinatorie per scopi di screening ad alto rendimento.
In questo articolo è stata presentata una serie di protocolli per la fabbricazione e il funzionamento di un dispositivo microfluidico basato su PDMS per la generazione automatizzata di librerie combinatorie in compartimenti acqua-in-olio chiamati plug. La combinazione di microfluidica con tecnologia a goccioline fornisce una potente tecnica per incapsulare piccole quantità di reagenti in un gran numero di compartimenti, aprendo così strade per lo screening combinatorio su larga scala.
In precedenza, sono state descritte diverse tecnologie per generare compartimenti chimicamente distinti utilizzando la microfluidica, ognuna con i suoi vantaggi e limiti. Kulesa et al.50, hanno descritto una strategia per incapsulare le cellule con codici a barre in goccioline utilizzando piastre di microtitolazione e fondendo queste goccioline utilizzando un campo elettrico per creare una libreria combinatoria. Sebbene un tale approccio possa generare molte combinazioni di goccioline, è limitato dalla necessità di passaggi di gestione manuale nel flusso di lavoro. Tomasi et al.51 hanno sviluppato una piattaforma microfluidica per fondere una gocciolina contenente sferoidi (aggregati cellulari fluttuanti) con una gocciolina di stimolo, consentendo così la manipolazione del microambiente sferoide. Questo metodo consente lo studio di fenomeni importanti come le interazioni cellula-cellula e l’effetto dei farmaci, ma è relativamente basso. Eduati et al.46 e Utharala et al.47 hanno sviluppato una piattaforma basata su valvole microfluidiche in grado di generare librerie combinatorie ad alto rendimento in modo automatizzato. Tuttavia, in questi studi, le valvole vengono azionate utilizzando un dispositivo Braille, che richiede ingombranti passaggi di allineamento tra la microvalvola e il chip microfluidico. Una caratteristica chiave del sistema descritto in questo documento è l’implementazione di valvole pneumatiche PDMS per regolare il flusso del fluido nei canali di ingresso. Poiché queste valvole sono basate su PDMS, possono essere incorporate piuttosto agevolmente nelle fasi di fabbricazione del chip microfluidico. Inoltre, sono un’opzione relativamente semplice per controllare il flusso di liquidi nei canali di ingresso, in quanto possono essere azionati applicando pressione attraverso una fonte di gas esterna. Infine, è possibile programmare la durata e la sequenza di pressurizzazione e depressurizzazione di queste valvole, automatizzando così la produzione di popolazioni distinte di tappi in modo ad alta produttività. Un’altra caratteristica importante è l’uso di regimi di pressione costante per l’iniezione di reagenti attraverso l’ingresso, che consente di rinunciare all’incorporazione di canali di scarico per alleviare qualsiasi accumulo di pressione che si verifica in un regime di portata costante. Ciò semplifica la progettazione del dispositivo, riduce la necessità di valvole e hardware aggiuntivi per controllare le valvole del canale di scarico e riduce al minimo lo spreco di reagenti.
Mentre la fabbricazione di dispositivi con PDMS è relativamente semplice, l’implementazione di tali dispositivi richiede l’uso di un ampio armamentario hardware come le elettrovalvole pneumatiche (per controllare l’azionamento delle valvole PDMS), le pompe a pressione (per controllare il flusso di reagenti in ingresso e olio) e i programmi software (per regolare le elettrovalvole). Sebbene rappresentino un investimento significativo, tale configurazione fornisce coerenza e affidabilità per il corretto funzionamento del dispositivo. Inoltre, i componenti hardware e l’architettura delineati in questo protocollo sono configurati in modo modulare. Pertanto, è possibile utilizzare alternative per alcuni moduli per ridurre i costi o per adattarli a un’esigenza specifica. Ad esempio, esiste una varietà di pompe che possono essere utilizzate in base all’utilità, al budget, alla disponibilità e alla convenienza 52,53,54. È possibile incorporare componenti aggiuntivi come serbatoi di fluido e regolatori di temperatura per i reagenti di ingresso sensibili23. Inoltre, questo design può essere ingrandito o ridotto per soddisfare esigenze scientifiche specifiche. Ad esempio, in questo documento, viene descritto un prototipo a otto ingressi che consente di combinare otto reagenti unici per produrre tappi. Questo può essere scalato a un dispositivo a 16 ingressi che consente un numero maggiore di ingressi e combinazioni più ampie di essi. Di conseguenza, avrà bisogno di canali di controllo ed elettrovalvole aggiuntivi per indirizzare gli ingressi, ma un tale prototipo consente di generare librerie combinatorie più grandi e diversificate. Infine, in questo articolo, ogni popolazione di tappi è prodotta dall’apertura di tre degli otto ingressi acquosi del dispositivo microfluidico. È stato osservato che per tale configurazione, una pressione di circa 200 mbar per i reagenti oleosi e di 400 mbar per i reagenti acquosi corrispondeva a un regime di produzione di tappi, che è guidato esclusivamente dall’azionamento della valvola. Quando sono state applicate pressioni più elevate all’olio, è stata osservata una rottura dei tappi e l’applicazione di pressioni più basse ha portato a una fusione dei tappi. Il regime di pressione ottimale per la produzione di tappi dipende da un’ampia gamma di fattori, come il numero di ingressi che contribuiscono alla formazione di un tappo, la natura e la viscosità dei fluidi e le dimensioni dei canali, e deve essere ottimizzato come e quando necessario.
Uno degli svantaggi del funzionamento in regime di pressione costante è che fluidi con viscosità diverse hanno portate diverse a pressione costante. Pertanto, è necessario assicurarsi che i reagenti acquosi che fluiscono attraverso gli ingressi siano di viscosità comparabili. L’uso di fluidi di diversa viscosità influenzerà non solo il flusso del fluido nei canali di ingresso, ma anche la formazione di tappi alla giunzione a T, compromettendo così la composizione delle popolazioni di tappi. Un altro inconveniente è la contaminazione di una popolazione di tappi da reagenti residui alla giunzione T. Quando il dispositivo passa dalla produzione di diverse popolazioni di spine, la prima/ultima spina nella sequenza di ciascuna popolazione tende ad essere contaminata dalla popolazione precedente o successiva. Questo può essere superato producendo repliche extra di ciascuna popolazione e scontando il tappo contaminato durante l’analisi. Infine, esiste anche la possibilità di variazioni tra i singoli dispositivi derivanti da incongruenze nella fabbricazione e/o fonti esterne (fluttuazioni di pressione). Questo problema può essere mitigato riutilizzando più volte un singolo chip microfluidico e assicurandosi che venga eseguita un’esecuzione completa di una libreria combinatoria su un singolo chip per ridurre al minimo l’effetto di queste incoerenze.
Il dispositivo microfluidico e il relativo set di protocolli operativi presentati in questo documento sono stati utilizzati per dimostrare la produzione di una libreria combinatoria quantitativa di spine. Questa piattaforma può, quindi, generare rapidamente librerie combinatorie di popolazioni di plug distinte in modo ad alto rendimento. Di conseguenza, tali tecnologie possono essere utilizzate per una varietà di scopi di screening, tra cui, ma non solo, lo screening combinatorio dei farmaci su campioni bioptici dei pazienti – per cui un piccolo numero di cellule recuperate da una biopsia può essere distribuito in un gran numero di goccioline e trattato con un’ampia combinazione del farmaco antitumorale per ottimizzare la terapia individuale per un determinato campione di paziente – e quindi accelerare la terapia oncologica personalizzata46, 48,55.
The authors have nothing to disclose.
Vorremmo ringraziare Stacey Martina del NanoLab TuE per l’aiuto con la deposizione da vapore HMDS. Questa ricerca è stata finanziata dall’Institute for Complex Molecular Systems (ICMS) presso la TU/e e dal programma di gravitazione IMAGINE! (numero di progetto 24.005.009).
1,1,3,3 tetramethyldisiloxane | Merck Life Science NV | MFCD00008256 | |
4 channel digital input/output module | WAGO Kontakttechnik GmbH | 750-504 | |
Acetone | Boom Labs | BOOMSKEUZW3 | |
Analysis Software | Eindhoven University of Technology | https://github.com/SysBioOncology/BilayerMicrofluidicsAnalysis_JoVE | |
AZ 40XT 11D | Merck Life Science NV | 212299 | Positive photoresist |
AZ 726 MIF developer | Merck Life Science NV | 10055824960 | Developer for positive photoresist |
Biopsy Punch, Rapid Core | World Precision Instruments Germany, GMBH | 504529 | 0.75 mm ID, W/Plunge |
Blue food dye | PME | FC1036 | |
Controller end module | WAGO Kontakttechnik GmbH | 750-600 | |
Ethernet Controller | WAGO Kontakttechnik GmbH | 750-881 | |
FC-40 | Merck Millipore | F9755-100ML | |
Fluigent flow unit | Fluigent | FLU-S-D | |
Fluigent pressure system | Fluigent | MFCS-EZ | 0 – 2 bar |
Fluorescein | Merck Life Science NV | MFCD00005050 | |
Hot plate | Torrey Pines Scientific | HP61 | |
Inverted microscope | Nikon Instruments | Eclipse Ti-E | |
Isopropanol | Boom Labs | BOOMSKEUZE3 | |
LabVIEW (Software Version 20) | Eindhoven University of Technology | https://github.com/SysBioOncology/BilayerMicrofluidicsAnalysis_JoVE/tree/main/LabVIEW_8_inlet_device_ VERSION_1 |
All files have been saved for LabVIEW version 20. It is advised to use this version or higher to open the files. |
Luer stubs | Instech Laboratories, Inc. | LS23 | 23 ga, 0.5" |
Male Luer to barb connectors | Cole Parmer | 45505-32 | 3/32" ID |
MasterFlex PTFE tubing | Avator/VWR | 48634 | |
Microscope Slides | VWR | 470150-480 | |
Microscope slides, Plain | Corning | 2947-75X50 | |
Mineral Oil | Merck Millipore | 330760-1L | |
mr DEV 600 | Micro resist Technology | R815100 | Developer for negative photoresist |
Oven | Thermo Scientific | Heraeus T6P 50045757 | |
Oxygen plasma asher | Quorum Technologies | K1050X | |
Photomask | CAD/Art Services, Inc. | ||
Photomask Design | Eindhoven University of Technology (Adapted from Merten Lab, EPFL) | https://github.com/SysBioOncology/BilayerMicrofluidicsAnalysis_JoVE/blob/main/8_inlet_JoVE_device_design.dwg | |
Pneumatic valve array | FESTO | 1x 8 valve array, Normally closed valves | |
Silicon Wafers | Silicon Materials | <1-0-0>, 100 mm diameter, 525 μm thickness | |
Single edge blades | GEM Scientific | ||
Soft tubing | Fluigent | 1 mm ID, 3 mm OD | |
Spin coater | Laurell Technologies Corporation | WS-650MZ-23NPPB | |
Stereo microscope | Olympus Corporation | SZ61 | |
SU-8 3050 | Kayakli Advanced Materials | Y311075 1000L1GL | Negative photoresist |
Sylgard 184 Silicone Elastomer Kit (PDMS) | Dow | 1317318 | |
Syringe | B Braun Injekt – F Fine Dosage Syringe | 10303002 | |
UV-LED exposure system | Idonus | UV-EXP150S-SYS | |
Vacuum pump | Vacuumbrand GmbH | MD1C | |
Weighing scales | Sartorius | M-prove |