Summary

使用远端中动脉闭塞技术诱导小鼠急性缺血性卒中

Published: December 15, 2023
doi:

Summary

在这里,我们提出了一种方案,通过在 C57BL/6J 小鼠中经颅电凝建立远端大脑中动脉闭塞 (dMCAO) 模型,并评估随后的神经行为和组织病理学特征。

Abstract

缺血性中风仍然是全球成年人群死亡和功能障碍的主要原因。只有少数缺血性卒中患者有资格在最佳时间窗口内接受血管内溶栓或机械血栓切除术治疗。在这些中风幸存者中,约有三分之二的人在很长一段时间内患有神经功能障碍。建立稳定且可重复的实验性缺血性脑卒中模型,对于进一步研究缺血性脑卒中的病理生理机制和开发有效的治疗策略具有极其重要的意义。大脑中动脉 (MCA) 是人类缺血性中风的主要部位,MCA 闭塞是局灶性脑缺血的常用模型。在该协议中,我们描述了通过在 C57BL/6 小鼠中经颅电凝建立远端 MCA 闭塞 (dMCAO) 模型的方法。由于闭塞部位位于 MCA 的皮质分支,因此该模型会产生局限于皮层的中度梗死病变。在该模型中,神经行为学和组织病理学特征表明可见的运动功能障碍、神经元变性以及小胶质细胞和星形胶质细胞的明显激活。因此,这种 dMCAO 小鼠模型为研究缺血中风和普及价值提供了有价值的工具。

Introduction

中风是一种常见的急性脑血管疾病,其特征是残疾和死亡率高1。在所有中风病例中,近 80% 属于缺血性中风2。到目前为止,静脉溶栓仍然是治疗急性缺血性卒中的少数有效方法之一。然而,溶栓治疗的有效性受到有效时间窗窄和出血转化发生的限制3。在缺血性中风后的长期康复阶段,相当多的患者可能会出现持久的神经功能障碍4。迫切需要进一步研究以揭示缺血性中风的潜在病理生理机制,并促进针对缺血性中风的新型治疗策略的开发。建立可靠且可复制的缺血性中风模型对于缺血性中风领域的基础研究以及随后的转化研究至关重要。

1981 年,Tamura 等人通过在大脑中动脉 (MCA) 近端部位采用经颅电凝术开发了局灶性脑缺血模型5。从那时起,许多研究人员利用各种方法,如结扎、压迫或夹闭来诱导远端 MCA 闭塞 (dMCAO),以建立短暂性或永久性缺血性卒中模型 6,7,8。与细丝模型相比,dMCAO 模型表现出明显的优势,例如更小的梗死面积和更高的生存率,使其更适合研究缺血性中风后的长期功能恢复9。此外,与细丝模型相比,dMCAO 模型在老年啮齿动物中的存活率更高,使其成为研究老年和合并症动物模型中缺血性中风的有利工具10。光血栓形成 (PT) 卒中模型已被证明具有手术侵入性小和死亡率显着低的特点。然而,与 dMCAO 模型相比,PT 模型表现出更大程度的细胞坏死和组织水肿,导致没有侧支循环11。此外,值得注意的是,在 PT 模型中观察到的缺血病变主要由微血管闭塞引起,这与 dMCAO 模型中大血管栓塞诱导的脑缺血有很大不同12

在本文中,我们提出了通过小骨窗开颅手术凝固远端 MCA 来诱导小鼠 dMCAO 模型的方法。此外,我们进行了组织学检查和行为评估,以全面表征该实验模型中的缺血性损伤和中风结局。我们的目标是让研究人员熟悉该模型,并促进对缺血性中风病理机制的进一步研究。

Protocol

该实验方案由江汉大学机构动物护理和使用委员会批准,并按照中国疾病预防控制中心发布的实验动物伦理指南进行。该方案使用成年雄性 C57BL/6J 小鼠,10 周龄,体重 24-26 g。将所有小鼠饲养在 12 小时的光照/黑暗循环受控环境中,随意进食和水 。 1. 术前准备 注意:该协议所需的关键仪器和设备如图 1 所示。 <…

Representative Results

用于执行 dMCAO 的关键器械是显微外科器械组、异氟醚蒸发器和单极显微外科电凝发生器, 如图 1 所示。本研究的实验过程如图 2 所示。简而言之,采用小骨窗开颅手术暴露远端 MCA,随后凝固以诱导 C57BL/6 小鼠永久性局灶性脑缺血。此外,在 dMCAO 后 3 天通过 TTC 染色、组织学检查和行为评估评估缺血性损伤和卒中结局。在手术过程中,只有 1 只小鼠死?…

Discussion

在目前的开颅电凝 dMCAO 模型方案中,外科手术以最小的侵入性进行,其中仅分离一部分颞肌以减轻对咀嚼功能的不利影响。小鼠在手术后都恢复得很好,没有观察到喂养困难的情况。MCA 可以在小鼠的颞骨中轻松辨别,从而有助于精确识别合适的开颅手术位置。这种 dMCAO 模型诱导的缺血性病变位于皮层的外侧部分,与 Llovera G 等人描述的先前报告一致13。此外,与该模型相关的梗…

Declarações

The authors have nothing to disclose.

Acknowledgements

本研究得到湖北省自然科学基金资助 (2022CFC057)。

Materials

2,3,5-Triphenyltetrazolium
Chloride (TTC)
Sigma-Aldrich 108380 Dye for TTC staining
24-well culture plate Corning (USA) CLS3527 Vessel for TTC staining
4% paraformaldehyde Wuhan Servicebio Technology
Co., Ltd.
G1101 Tissue fixation
5% bovine serum albumin Wuhan BOSTER Bio Co., Ltd. AR004 Non-specific antigen blocking
5-0 Polyglycolic acid suture Jinhuan Medical Co., Ltd KCR531 Material for surgery
Anesthesia machine Midmark Corporation VMR Anesthetized animal
Antifade mounting medium Beyotime Biotech P0131 Seal for IF staining
Automation-tissue-dehydrating 
machine
Leica Biosystems (Germany) TP1020 Dehydrate tissue
Depilatory cream Veet (France) 20220328 Material for surgery
Diclofenac sodium gel Wuhan Ma Yinglong Pharmaceutical
 Co., Ltd.
H10950214 Analgesia for animal
Drill tip (0.8 mm) Rwd Life Science Co., Ltd. Equipment for surgery
Eosin staining solution Wuhan Servicebio Technology
Co., Ltd.
G1001 Dye for H&E staining
Eye ointment Guangzhou Pharmaceutical Co., Ltd H44023098 Material for surgery
Fluorescence microscope Olympus (Japan) BX51 Image acquisition
GFAP Mouse monoclonal antibody Cell Signaling Technology Inc.
(Danvers, MA, USA)
3670 Primary antibody for IF staining
Goat anti-mouse Alexa
488-conjugated IgG
Cell Signaling Technology Inc.
(Danvers, MA, USA)
4408 Second antibody for IF staining
Goat anti-rabbit Alexa
594-conjugated IgG
Cell Signaling Technology Inc.
(Danvers, MA, USA)
8889 Second antibody for IF staining
Grip strength meter Shanghai Xinruan Information Technology Co., Ltd. XR501 Equipment for behavioral test
Hematoxylin staining solution Wuhan Servicebio Technology
Co., Ltd.
G1004 Dye for H&E staining
Iba1 Rabbit monoclonal antibody Abcam ab178846 Primary antibody for IF staining
Isoflurane Rwd Life Science Co., Ltd. R510-22-10 Anesthetized animal
Laser doppler blood flow meter Moor Instruments (UK) moorVMS Blood flow monitoring
Meloxicam Boehringer-Ingelheim J20160020 Analgesia for animal
Microdrill Rwd Life Science Co., Ltd. 78001 Equipment for surgery
Microsurgical instruments set Rwd Life Science Co., Ltd. SP0009-R Equipment for surgery
Microtome Thermo Fisher Scientific (USA) HM325 Tissue section production
Microtome blade Leica Biosystems (Germany) 819 Tissue section production
Monopolar electrocoagulation generator Spring Scenery Medical Instrument
Co., Ltd.
CZ0001 Equipment for surgery
Mupirocin ointment Tianjin Smith Kline & French
Laboratories Ltd.
H10930064 Anti-infection for animal
NeuN Rabbit monoclonal antibody Cell Signaling Technology Inc.
(Danvers, MA, USA)
24307 Primary antibody for IF staining
Neutral balsam Absin Bioscience abs9177 Seal for H&E staining
Paraffin embedding center Thermo Fisher Scientific (USA) EC 350 Produce paraffin blocks
Pentobarbital sodium Sigma-Aldrich P3761 Euthanized animal
Phosphate buffered saline Shanghai Beyotime Biotech Co., Ltd C0221A Rinsing for tissue section
Shaver Shenzhen Codos Electrical Appliances
Co.,Ltd.
CP-9200 Equipment for surgery
Sodium citrate solution Shanghai Beyotime Biotech Co., Ltd. P0083 Antigen retrieval for IF staining

Referências

  1. Patel, P., Yavagal, D., Khandelwal, P. Hyperacute management of ischemic strokes: JACC Focus Seminar. J Am Coll Cardiol. 75 (15), 1844-1856 (2020).
  2. GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the Global Burden of Disease study 2016. Lancet Neurol. 18 (5), 439-458 (2019).
  3. Joo, H., Wang, G., George, M. G. A literature review of cost-effectiveness of intravenous recombinant tissue plasminogen activator for treating acute ischemic stroke. Stroke Vasc Neurol. 2 (2), 73-83 (2017).
  4. Jones, A. T., O’Connell, N. K., David, A. S. Epidemiology of functional stroke mimic patients: a systematic review and meta-analysis. Eur J Neurol. 27 (1), 18-26 (2020).
  5. Tamura, A., et al. Focal cerebral ischaemia in the rat: Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab. 1 (1), 53-60 (1981).
  6. Kuraoka, M., et al. Direct experimental occlusion of the distal middle cerebral artery induces high reproducibility of brain ischemia in mice. Exp Anim. 58 (1), 19-29 (2009).
  7. Orset, C., et al. Mouse model of in situ thromboembolic stroke and reperfusion. Stroke. 38 (10), 2771-2778 (2007).
  8. Fluri, F., Schuhmann, M. K., Kleinschnitz, C. Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther. 9, 3445-3454 (2015).
  9. Candelario-Jalil, E., Paul, S. Impact of aging and comorbidities on ischemic stroke outcomes in preclinical animal models: A translational perspective. J Exp Neurol. 335, 113494 (2021).
  10. Zuo, X., et al. Attenuation of secondary damage and Aβ deposits in the ipsilateral thalamus of dMCAO rats through reduction of cathepsin B by bis(propyl)-cognitin, a multifunctional dimer. Neuropharmacology. 162, 107786 (2020).
  11. Shabani, Z., Farhoudi, M., Rahbarghazi, R., Karimipour, M., Mehrad, H. Cellular, histological, and behavioral pathological alterations associated with the mouse model of photothrombotic ischemic stroke. J Chem Neuroanat. 130, 102261 (2023).
  12. Caleo, M. Rehabilitation and plasticity following stroke: Insights from rodent models. Neurociência. 311, 180-194 (2015).
  13. Llovera, G., Roth, S., Plesnila, N., Veltkamp, R., Liesz, A. Modeling stroke in mice: permanent coagulation of the distal middle cerebral artery. J Vis Exp. (89), e51729 (2014).
  14. Lavayen, B. P., et al. Neuroprotection by the cannabidiol aminoquinone VCE-004.8 in experimental ischemic stroke in mice. Neurochem Int. 165, 105508 (2023).
  15. Hu, K., et al. Cathepsin B knockout confers significant brain protection in the mouse model of stroke. J Exp Neurol. 368, 114499 (2023).
  16. Yu, S. P., et al. Optochemogenetic stimulation of transplanted iPS-NPCs enhances neuronal repair and functional recovery after ischemic stroke. J Neurosci. 39 (33), 6571-6594 (2019).
  17. Lin, Y. H., et al. Opening a new time window for treatment of stroke by targeting HDAC2. J Neurosci. 37 (28), 6712-6728 (2017).
  18. Shi, X. F., Ai, H., Lu, W., Cai, F. SAT: Free software for the semi-automated analysis of rodent brain sections with 2,3,5-triphenyltetrazolium chloride staining. Front Neurosci. 13, 102 (2019).
  19. Jensen, E. C., et al. Quantitative analysis of histological staining and fluorescence using ImageJ. Anat Rec. 296 (3), 378-381 (2013).
  20. Donahue, J., Wintermark, M. Perfusion CT and acute stroke imaging: foundations, applications, and literature review. J Neuroradiol. 42 (1), 21-29 (2015).
  21. Sun, M., et al. Long-term L-3-n-butylphthalide pretreatment attenuates ischemic brain injury in mice with permanent distal middle cerebral artery occlusion through the Nrf2 pathway. Heliyon. 8 (7), e09909 (2022).
  22. Balkaya, M. G., Trueman, R. C., Boltze, J., Corbett, D., Jolkkonen, J. Behavioral outcome measures to improve experimental stroke research. Behav Brain Res. 352, 161-171 (2018).
  23. Hao, T., et al. Inflammatory mechanism of cerebral ischemia-reperfusion injury with treatment of stepharine in rats. Phytomedicine. 79, 153353 (2020).
  24. Pietrogrande, G., et al. Low oxygen post conditioning prevents thalamic secondary neuronal loss caused by excitotoxicity after cortical stroke. Sci Rep. 9 (1), 4841 (2019).
  25. Shi, X., et al. Stroke subtype-dependent synapse elimination by reactive gliosis in mice. Nat Commun. 12 (1), 6943 (2021).
  26. Chen, W. C., et al. Aryl hydrocarbon receptor modulates stroke-induced astrogliosis and neurogenesis in the adult mouse brain. JNeuroinflammation. 16 (1), 187 (2019).

Play Video

Citar este artigo
Leng, C., Li, Y., Sun, Y., Liu, W. Induction of Acute Ischemic Stroke in Mice Using the Distal Middle Artery Occlusion Technique. J. Vis. Exp. (202), e66134, doi:10.3791/66134 (2023).

View Video