Ce protocole décrit un processus simple qui utilise des micro-moules en plastique pratiques pour des opérations simples de microgaufrage afin de fabriquer des microcanaux sur du papier de cellulose nanofibrillé, atteignant une largeur minimale de 200 μm.
Le nanopapier, dérivé de la cellulose nanofibrillée, a suscité un intérêt considérable en tant que matériau prometteur pour les applications microfluidiques. Son attrait réside dans une gamme d’excellentes qualités, notamment une surface exceptionnellement lisse, une transparence optique exceptionnelle, une matrice de nanofibres uniforme avec une porosité à l’échelle nanométrique et des propriétés chimiques personnalisables. Malgré la croissance rapide de la microfluidique à base de nanopapier, les techniques actuelles utilisées pour créer des microcanaux sur le nanopapier, telles que l’impression 3D, le revêtement par pulvérisation ou la découpe et l’assemblage manuels, qui sont cruciales pour les applications pratiques, présentent encore certaines limites, notamment la sensibilité à la contamination. De plus, ces méthodes sont limitées à la production de canaux de taille millimétrique. Cette étude présente un processus simple qui utilise des micro-moules en plastique pratiques pour des opérations simples de microgaufrage afin de fabriquer des microcanaux sur du nanopapier, atteignant une largeur minimale de 200 μm. Le microcanal développé surpasse les approches existantes, en quadruplant l’amélioration et peut être fabriqué en 45 minutes. De plus, les paramètres de fabrication ont été optimisés et un tableau de référence rapide pratique est fourni aux développeurs d’applications. La preuve de concept d’un mélangeur laminaire, d’un générateur de gouttelettes et de dispositifs analytiques fonctionnels à base de nanopapier (NanoPAD) conçus pour la détection de la rhodamine B à l’aide de la spectroscopie Raman améliorée en surface a été démontrée. Notamment, les NanoPAD ont montré des performances exceptionnelles avec des limites de détection améliorées. Ces résultats exceptionnels peuvent être attribués aux propriétés optiques supérieures du nanopapier et à la méthode de microgaufrage précise récemment développée, permettant l’intégration et le réglage fin des NanoPAD.
Récemment, le papier de cellulose nanofibrillée (NFC) (nanopapier) est apparu comme un matériau de substrat très prometteur pour diverses applications telles que l’électronique flexible, les dispositifs énergétiques et les produits biomédicaux 1,2,3,4. Dérivé de plantes naturelles, le nanopapier est économique, biocompatible et biodégradable, ce qui en fait une alternative attrayante au papier cellulosique traditionnel 5,6. Ses propriétés exceptionnelles comprennent une surface ultra-lisse avec une rugosité de surface inférieure à 25 nm et une structure à matrice cellulosique dense, permettant la création de nanostructures hautement structurées7. D’abondants groupes hydroxyles de nanopapier contribuent à sa structure nanocellulosique compacte et serrée8. Le nanopapier présente une excellente transparence optique et une brume optique minimale, ce qui le rend bien adapté aux capteurs optiques. De plus, son hydrophilie inhérente permet un écoulement sans pompe, même avec sa structure épaisse, offrant un mouvement de fluide autonome 9,10. La nanocellulose a diverses applications dans les capteurs biologiques, les dispositifs électroniques conducteurs, les plateformes de culture cellulaire, les supercondensateurs, les batteries, etc., démontrant sa polyvalence et son potentiel11,12. En particulier, la nanocellulose est prometteuse pour les dispositifs microfluidiques analytiques à base de papier (μPAD), offrant des avantages uniques par rapport au papier de chromatographie conventionnel.
Au cours de la dernière décennie, les μPAD ont fait l’objet d’une attention particulière en raison de leur prix abordable, de leur biocompatibilité, de leur fonctionnement sans pompe et de leur facilité de production13,14. Ces appareils sont devenus des outils de diagnostic efficaces au point de service, en particulier dans les milieux à ressources limitées15,16,17. Une avancée significative dans ce domaine a été le développement de l’impression à la cire, mise au point par George Whitesides18 et le groupe de Bingcheng Lin19, permettant la création de μPAD fonctionnels en incorporant des microcanaux sur du papier de chromatographie. Par la suite, les μPAD ont rapidement évolué et diverses techniques de biodétection, y compris les méthodes électrochimiques 20, la chimiluminescence21 et le test immuno-enzymatique (ELISA)22,23,24, ont été mises en œuvre avec succès pour la détection de divers biomarqueurs tels que les protéines 25,26, l’ADN 27,28, les ARN 29,30 et exosomes31. Malgré ces réalisations, les μPAD sont toujours confrontés à des défis, notamment des vitesses d’écoulement lentes et l’évaporation des solvants.
Plusieurs méthodes ont été proposées pour créer des microcanaux sur du nanopapier32,33,34. Une approche consiste à imprimer en 3D des ingrédients sacrificiels dans le matériau, mais elle nécessite un revêtement hydrophobe qui limite le fonctionnement sans pompe33. Une autre technique consiste à empiler manuellement des couches de canaux entre des feuilles de nanopapier à l’aide de colle, ce qui demande beaucoup de main-d’œuvre32. Alternativement, le revêtement par pulvérisation de fibres de nanocellulose sur des moules pré-modelés peut créer des microcanaux, mais cela implique une préparation de moule longue et coûteuse34. Notamment, ces méthodes sont limitées aux microcanaux à l’échelle millimétrique, ce qui compromet les avantages des dispositifs microfluidiques en termes de consommation et d’intégration du volume de réactif. Le développement d’un procédé simple de structuration de microcanaux en nanopapier avec une résolution à l’échelle micrométrique reste un défi.
Cette étude présente une méthode unique de structuration de microcanaux en nanopapier basée sur le microgaufrage pratique. L’approche offre plusieurs avantages par rapport aux méthodes existantes, car elle ne nécessite aucun équipement coûteux ou spécialisé, est simple, rentable et très précise. Un moule à microcanaux convexe est fabriqué par découpe laser d’un film de polytétrafluoroéthylène (PTFE), connu pour son inertie chimique et ses propriétés antiadhésives. Ce moule est ensuite utilisé pour gaufrer des microcanaux sur une membrane de gel de nanopapier. Une deuxième couche de gel de nanopapier est appliquée sur le dessus pour créer des canaux creux fermés. À l’aide de cette technique de structuration, des dispositifs microfluidiques fondamentaux sur nanopapier sont développés, y compris un mélangeur laminaire et un générateur de gouttelettes. De plus, la fabrication de NanoPAD de microscopie Raman améliorée en surface (SERS) est démontrée. La création in situ d’un substrat SERS à base de nanoparticules d’argent est obtenue en introduisant deux réactifs chimiques (AgNO3 et NaBH4) dans les canaux, ce qui permet d’obtenir des performances remarquables avec de faibles limites de détection (LODs).
L’objectif principal de cette étude est de développer une méthode simple pour fabriquer des microcanaux sur du nanopapier. Une technique de gaufrage efficace a été mise au point en utilisant le PTFE comme moule pour relever ce défi12. En optimisant la température et la pression de gaufrage, une série d’expériences ont été menées pour établir un processus de fabrication fiable pour les NanoPAD. De plus, l’utilisation d’un tableau de référence rapide pour ajuster les applicati…
The authors have nothing to disclose.
Les auteurs reconnaissent le soutien financier des programmes de la Fondation des sciences naturelles de l’enseignement supérieur du Jiangsu (22KJB460033) et du Programme des sciences et technologies du Jiangsu – Young Scholar (BK20200251). Ce travail est également partiellement soutenu par le Centre de recherche de l’Université de l’IA XJTLU, le Centre de recherche en ingénierie de la science des données et du calcul cognitif de la province du Jiangsu à XJTLU et la plate-forme d’innovation en IA SIP (YZCXPT2022103). Le soutien du Laboratoire clé d’État pour l’ingénierie des systèmes de fabrication par le biais du projet ouvert (SKLMS2023019) et du Laboratoire clé d’ingénierie bionique du ministère de l’Éducation, est également reconnu.
AgNO3 | Hushi (Shanghai, China) | 7761-88-8 | >99% |
Ethanol | Hushi (Shanghai, China) | 64-17-5 | >99% |
Hexadecane | Macklin (Shanghai, China) | 544-76-3 | >99% |
LabSpec software | Horiba (Japan) | LabSpec5 | |
Melamine | Macklin (Shanghai, China) | 108-78-1 | >99% |
NaBH4 | Aladdin (Shanghai, China) | 16940-66-2 | >99% |
Origin lab software | OriginLab (USA) | ||
Polyethylene terephthalate (PET) | Myers Industries (Akron, USA) | ||
Polytetrafluoroethylene films | Shenzhen Huashenglong plastic material Co., Ltd. (Shenzhen, China) | Teflon film | |
PVDF filter membrane | EMD Millipore Corporation (USA) | VVLP04700 | pore size: 0.1 μm |
Raman spectrometer | Horiba (Japan) | Xplo RA | |
Rhodamine B | Macklin (Shanghai, China) | 81-88-9 | >95% |
Scanning electron microscopy (SEM) | FEI(USA) | Scios 2 HiVac | |
Silicon wafer | Horiba (Japan) | diameter: 5 mm | |
TEMPO-oxidized NFC slurry | Tianjin University of Science and Technology | 1.0 wt% solid, carboxylate level 2.0 mmol/g solid, average nanofiber diameter: 10 nm |