Summary

小鼠肠道中 T4 噬菌体和 大肠杆菌 相互作用:研究体内宿主-噬菌体动力学的原型模型

Published: January 26, 2024
doi:

Summary

噬菌体(噬菌体)是感染细菌的病毒,是肠道微生物组的一个组成部分。尽管这些共生居民驱动细菌适应性和种群动态,但人们对它们如何影响肠道稳态和疾病知之甚少。该方案研究小鼠模型中分离的T4噬菌体,适应其他噬菌体 – 细菌对。

Abstract

噬菌体(噬菌体)是以物种和菌株水平特异性感染细菌的病毒,是所有已知生态系统中最丰富的生物实体。在细菌群落中,例如在肠道微生物群中发现的细菌群落中,噬菌体与调节微生物群群动态和驱动细菌进化有关。在过去十年中,人们对噬菌体研究重新产生了兴趣,部分原因是裂解噬菌体的宿主特异性杀伤能力,这为对抗日益增长的抗菌素耐药细菌威胁提供了一种有前途的工具。此外,最近的研究表明噬菌体粘附在肠道粘液上,这表明它们可能在防止细菌入侵底层上皮细胞方面具有保护作用。重要的是,与细菌微生物组一样,被破坏的相体组与炎症性肠病等疾病的恶化结果有关。先前的研究表明,噬菌体可以通过粪便滤液移植调节动物和人类的微生物组,有益于宿主的健康。随着最近的研究浪潮,有必要建立和标准化在肠道微生物组背景下研究噬菌体的方案该协议提供了一套程序,用于在小鼠胃肠道的背景下研究分离的T4噬菌体及其细菌宿主大肠杆菌。这里描述的方法概述了如何从噬菌体裂解物开始,将其施用于小鼠并评估对细菌宿主和噬菌体水平的影响。该方案可以修改并应用于其他噬菌体 – 细菌对,并为研究体内宿主 – 噬菌体动力学提供了起点。

Introduction

噬菌体或噬菌体是感染和杀死细菌的病毒,具有物种和菌株水平的特异性1。噬菌体在复杂的细菌群落(如肠道微生物群)中发挥着重要作用,它们与调节种群动态和驱动细菌适应性有关2。在过去十年中,由于抗菌素耐药病原体3的兴起,以及噬菌体疗法作为替代治疗策略的潜力,人们对噬菌体研究重新产生了兴趣。近年来,裂解噬菌体混合物已静脉注射,在人类严重的抗生素耐药细菌性败血症感染中取得了一些成功 3,4。口服噬菌体疗法也被提议作为抗生素的潜在替代品,以治疗肠道感染和炎症。此外,噬菌体还与粪便滤液移植 (FFT) 的成功有关,FFT 是经过过滤以去除细菌的粪便微生物群制剂,用于治疗复发性艰难梭菌感染 (rCDI)5,6、炎症性肠病 (IBD)7,8 和早产猪坏死性小肠结肠炎9.鉴于这些结果,重要的是要考虑噬菌体与肠道微生物群以及噬菌体与哺乳动物宿主之间的相互作用,因为将新型噬菌体添加到预先存在的群落中可能会对整个群落产生间接影响,而不仅仅是其目标细菌2,10

噬菌体与其靶细菌相互作用的研究已被证明有助于了解肠道中噬菌体和细菌相互作用的机制和影响。在这种情况下已经表明 Caudovirales 目的大肠杆菌特异性 T4 噬菌体需要位于病毒粒子表面高度抗原外衣壳 (Hoc) 蛋白内的免疫球蛋白 (Ig) 样结构域才能粘附在肠粘液上 11。此外,transwell 试验表明,T4 噬菌体能够与上皮细胞培养物相互作用,并通过巨胞饮作用通过细胞层易位12,13。这些结果支持噬菌体可以与后生宿主相互作用的假设,即使它们无法感染真核细胞。这些模型虽然有用,但缺乏肠道生态系统中发生的全部复杂相互作用,而这些相互作用是全面探索噬菌体、细菌和后生动物宿主之间的三方相互作用所必需的。

小鼠模型是研究复杂环境中噬菌体的重要工具。噬菌体给药的理想应用是作为治疗抗微生物药物耐药性感染或与慢性炎症性疾病(包括 IBD)相关的病原体的替代策略。然而,新兴文献表明,噬菌体在体外的行为并不能完全代表体内功能。Buttimer等人14证明,噬菌体混合物能够在体外耗尽简化的人类微生物群联盟中的靶细菌,但不能在用相同细菌-噬菌体联盟定植的灵知小鼠中在体内复制。此外,在常规小鼠微生物组中,T7噬菌体导致其靶肠道细菌的选择性耗竭,尽管随着时间的推移观察到逐渐恢复,表明进化了耐药性15。其他研究表明,口服噬菌体及其靶细菌菌株在体内共存 2,16。事实上,除了噬菌体/细菌共存之外,噬菌体给药还导致了整体微生物群落组成和功能的广泛变化2,16。这在疾病环境中是相关的,因为一些研究发现,Caudovirales 的相对丰度增加与 IBD7817 之间的关联与细菌丰度的变化无关7。目前尚不清楚这是疾病发病机制的驱动因素还是结果。

噬菌体研究的历史焦点一直是围绕噬菌体与其靶细菌之间的关系。然而,考虑噬菌体与后生动物宿主的粘膜、上皮和免疫系统之间的潜在相互作用也很重要。这些相互作用在肠道噬菌体感染的整体反应中都起着重要作用。为了证明这一点,已经使用无菌 (GF) 小鼠研究了噬菌体,以阐明它们在不受微生物群干扰的情况下对免疫系统的影响8。在该系统中,噬菌体核酸由位于吞噬细胞免疫细胞(巨噬细胞和树突状细胞)内体内体内的Toll样受体(TLR)检测。这激活了下游信号转导并刺激了 T 细胞依赖性干扰素 (IFN)-γ 8 或 I 型 IFN的产生 18。此外,Fluckiger等人19认为记忆CD8+ T细胞与噬菌体编码(噬菌体)抗原的识别有关,这导致T细胞与肿瘤抗原的交叉反应,从而降低肿瘤负荷。最后,噬菌体特异性抗体的产生已在小鼠研究中被记录在小鼠研究中,其中噬菌体通过饮用水以连续的方式递送至动物模型 8,20,或通过几个月的重复口服强饲20,证明了噬菌体蛋白促进体液免疫反应的能力。尽管这些噬菌体接种模式允许免疫系统的最佳和持续启动,但它们可能不代表噬菌体与肠道环境之间自然发生的相互作用,也不代表口服噬菌体疗法的动力学。到目前为止,有限数量的研究已经检查了噬菌体与单定植小鼠模型中单一细菌物种的相互作用21。然而,单定植小鼠被证明在破译单个物种对胃肠道 (GI) 和免疫发育的微生物特异性影响方面至关重要 22,23,24,并且它们可能被证明有助于理解噬菌体、其靶细菌和后生动物宿主之间的三方相互作用。

令人兴奋的是,关于肠道噬菌体和肠道共生细菌之间的相互作用,以及后生动物宿主与居住在其中的噬菌体之间发生的相互作用,还有很多东西需要了解。该方案提供了一组程序来研究分离的T4噬菌体及其细菌对应物大 肠杆菌 (K-12,BW25113),使用灵敏素小鼠模型。这些标准化程序还为优化其他噬菌体/细菌二元组奠定了基础,使生长参数适应感兴趣的对。本文概述的方法包括:(1)制备用于小鼠口服强饲的T4噬菌体和载体裂解物;(2) 大肠杆 菌单定植gnotobiotic小鼠口服T4噬菌体;(3)监测小鼠粪便和组织中T4噬菌体水平随时间的变化。

对于这里介绍的代表性结果,纯化的 T4 噬菌体裂解物是从 Rohwer 实验室维护的噬菌体库储备中繁殖的。如本方案所述,用于繁殖 T4 噬菌体的噬菌体方法进行了调整 25。该方法可在三天内产生高滴度、内毒素低的噬菌体原液。利用这种方法,常规收集 10 mL ≥10 10 个斑块形成单位 (pfu)/mL 的 T4 噬菌体,< 0.5 个内毒素单位 (EU)/mL。口服或静脉给药小鼠的推荐内毒素水平分别为 ≤ 20 EU/mL 和 ≤ 5 EU/kg/h(或 20 g 小鼠在 1 小时内施用 0.1 EU),使其成为 体内 接种的噬菌体制备的合适方法。所有噬菌体储备均储存在4°C盐水镁(SM)噬菌体缓冲液中(步骤1.1.5.1中提供的配方)。 大肠杆菌 在LB培养基中培养。对于各种噬菌体-细菌对,不同的培养基和生长条件可以从该方案中调整。噬菌体也可以来自环境,例如废水、海水、土壤和肠道内容物,并且可以在制备之前按照 Sambrook 和 Russell26 的规定进行分离和纯化,使用适当的生长和繁殖条件对每个噬菌体宿主对 25。或者,噬菌体可以从商业来源(见 材料表)或噬菌体库获得。

Protocol

所有实验均按照UBC动物护理委员会和生物安全委员会批准的协议(A23-0113,B19-0038)制定的指南进行。小鼠被安置在不列颠哥伦比亚大学疾病建模中心的无病原体条件下。C57BL/6小鼠在无菌柔性薄膜隔离器中饲养,提供无菌小鼠饮食,水,垫料和筑巢材料。小鼠维持在12小时的昼夜循环中。实验小鼠,包括雄性和雌性,在每个实验中年龄匹配,年龄在6至12周之间,所有实验的体重为15-30克。 <p class…

Representative Results

为了研究小鼠肠道中T4噬菌体/大肠杆菌 二联体之间的相互作用,制备、净化和纯化T4噬菌体和载体裂解物(图1A)。通过斑块测定滴定T4噬菌体裂解物,并在SM缓冲液中稀释至2×107 pfu / mL(2 x 106 pfu /小鼠)。还滴定载体裂解物以确认不存在活噬菌体,并在与 T4 噬菌体裂解物相同体积的 SM 缓冲液中稀释。使用显色内毒素定量试剂盒对稀释裂解物中的内毒…

Discussion

与细菌对应物相比,微生物组中噬菌体的研究提出了重大挑战。具体来说,噬菌体不包含所有噬菌体共有的保守系统发育标记,类似于 16S 和 18S 核糖体亚基,分别允许对原核和真核物种进行测序和鉴定42。然而,随着下一代测序方法的进步,包括增加读长、通量和降低成本,噬菌体基因组数据库的快速扩展42,43,44。<sup class="xref…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者承认,他们进行这项研究的土地是 xwməθkwəy̓əm(马斯昆族)民族的传统、祖先和未割让的领土。它所在的土地一直是马斯昆族人的学习场所,几千年来,他们的文化、历史和传统在这个地方代代相传。我们鼓励其他人更多地了解他们在 https://native-land.ca 生活和工作的故乡。作者感谢加拿大自然科学与工程委员会 (NSERC) 加拿大研究生奖学金 – 硕士 (NP)、迈克尔·史密斯健康研究 BC 实习生奖(RT-2023-3174,至 MH)、加拿大自然科学与工程研究委员会 (NSERC) 发现资助计划(RGPIN-2019-04591 至 C.T.,RGPIN-2016-04282 至 LCO)、加拿大高级研究所/人类与微生物组(FL-001253 Appt 3362, C.T.)、迈克尔·史密斯健康研究基金会学者奖(18239 至 C.T.)、加拿大卫生研究院(PJT-159458 至 LCO)和加拿大创新基金会(34673 至 LCO,38277 至 CT)。我们感谢 UBC 疾病建模中心和 ubcFLOW 的技术支持,并得到 UBC GREx 生物复原力倡议的支持 以及 Osborne 和 Tropini 实验室的成员对手稿的批判性讨论和评估。 图1A图2A 是使用 Biorender.com 创建的。

Materials

1-octanol (99%) Thermofisher CAAAA15977-AP
50 ml PES Steriflip Sterile Disposable Vacuum Filter Units Millipore Sigma  SCGP00525
Agarose (Low-EEO/Multi-Purpose/Molecular Biology Grade) Fisher BioReagents  BP160-500
Amicon® 100kDa Ultra-15 centrifugal filter device, Ultracel-100 Millipore Sigma UFC910008
BD Microtainer® Tubes, SST BD Medical 365967
Bioexclusion airtight cages (ISO cages)  Techiplast 1245ISOCAGE
C1000 Touch™ Thermal Cycler with 96-Well Fast Reaction Module BioRad 1851196
Calcium Chloride Dihydrate (White Crystals to Powder) Fisher BioReagents BP510-500
Cap Locks For 1.5ML Tube 100/pk Andwin Scientific  16812612
Chloroform (Ethanol as Preservative/Certified ACS) Fisher C298-500
Copper coated steel beads (4.5 mm) Crosman Corporation 0767
DNeasy Blood & Tissue Kit (50) Thermo Scientific  69504
DreamTaq Green PCR Master Mix (2X) Thermo Scientific  K1081
Ethylenediaminetetraacetic acid (EDTA) disodium salt solution, for molecular biology, 0.5 M in H2O Sigma Aldrich E7889
Fisher BioReagents™ Agar, Powder / Flakes, Fisher BioReagents™  Fisher Bioreagents BP1423-500
Fisher BioReagents™ Microbiology Media: LB Broth (Powder) – Lennox  Fisher Bioreagents BP1427-500
GeneRuler 100 bp DNA Ladder Thermo Scientific  SM0241
Green FastMix® qPCR mix, 1250 rxns QuantaBio 95072-012
HEPA filters for isocage lids, AUTOCLAVABLE H14 FILTERS FOR ISO LINE- IRRADIATED Techiplast UISOHEPAXTBOX-300
Magnesium sulfate heptahydrate Fisher BioReagents BP213-1
MaxQ 6000 Incubated Shaker Thermo Scientific  8354-30-0009
Microbiology Media: LB Broth (Powder) – Lennox Fisher BioReagents BP1427-500
Microcentrifuge Tubes with Locking Snap Cap, 2ml Fisher 14-666-315
Parafilm sealing film Bemis PM-996
Phage stocks Carolina Biological Supply  n/a
PicoLab® Mouse Diet 20 EXT LabDiet 5R58
Pierce™ Chromogenic Endotoxin Quant Kit Thermo Scientific  A39552S
RNase A (17,500 U) Qiagen 19101
RNase-free DNase Set Qiagen  79254
Sodium Bicarbonate (Fine White Powder) Fisher Chemical BP328-500
Sodium Chloride (Crystalline/Certified ACS) Fisher Chemical S271
Sonicator (probe model CL-18; power source model FB50) Fisher scentific  n/a
Sterile flexible film isolator  Class Biologically Clean  n/a
SYBR™ Safe DNA Gel Stain Invitrogen S33102
T100 Thermal Cycler  BioRad 1861096
T4 phage primer, forward (CCACACATAGCGCGAGTATAA) IDT n/a
T4 phage primer, forward (GAAACTCGGTCAGGCTATCAA) IDT n/a
TissueLyser II  Qiagen  85300
Tris-HCl, 1M Solution, pH 8.0, Molecular Biology Grade, Ultrapure Thermo Scientific  AAJ22638AE
Water, (DNASE, RNASE free) Fisher BioReagents BP2484100

Referências

  1. Rohwer, F., Segall, A. M. A century of phage lessons. Nature. 528 (7580), 46-47 (2015).
  2. Hsu, B. B., et al. Dynamic modulation of the gut microbiota and metabolome by bacteriophages in a mouse model. Cell Host & Microbe. 25 (6), 803-814.e5 (2019).
  3. Gordillo Altamirano, F. L., Barr, J. J. Phage Therapy in the postantibiotic era. Clinical Microbiology Reviews. 32 (2), (2019).
  4. Schooley, R. T., et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrobial Agents and Chemotherapy. 61 (10), (2017).
  5. Ott, S. J., et al. Efficacy of Sterile Fecal Filtrate Transfer for Treating Patients With Clostridium difficile Infection. Gastroenterology. 152 (4), 799-811.e7 (2017).
  6. Zuo, T., et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut. 67 (4), 634-643 (2018).
  7. Norman, J. M., et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell. 160 (3), 447-460 (2015).
  8. Gogokhia, L., et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host & Microbe. 25 (2), 285-299.e8 (2019).
  9. Brunse, A., et al. Fecal filtrate transplantation protects against necrotizing enterocolitis. The ISME Journal. 16 (3), 686-694 (2022).
  10. Duerkop, B. A., Clements, C. V., Rollins, D., Rodrigues, J. L. M., Hooper, L. V. A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proceedings of the National Academy of Sciences of the United States of America. 109 (43), 17621-17626 (2012).
  11. Barr, J. J., et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proceedings of the National Academy of Sciences of the United States of America. 110 (26), 10771-10776 (2013).
  12. Nguyen, S., et al. Bacteriophage Transcytosis provides a mechanism to cross epithelial cell layers. mBio. 8 (6), (2017).
  13. Bichet, M. C., et al. Bacteriophage uptake by mammalian cell layers represents a potential sink that may impact phage therapy. iScience. 24 (4), 102287 (2021).
  14. Buttimer, C., et al. Impact of a phage cocktail targeting Escherichia coli and Enterococcus faecalis as members of a gut bacterial consortium in vitro and in vivo. Frontiers in Microbiology. 13, 936083 (2022).
  15. Li, Y., et al. Bacteriophages allow selective depletion of gut bacteria to produce a targeted-bacterium-depleted mouse model. Cell Reports Methods. 2 (11), 100324 (2022).
  16. Reyes, A., Wu, M., McNulty, N. P., Rohwer, F. L., Gordon, J. I. Gnotobiotic mouse model of phage-bacterial host dynamics in the human gut. Proceedings of the National Academy of Sciences of the United States of America. 110 (50), 20236-20241 (2013).
  17. Federici, S., et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell. 185 (16), 2879-2898.e4 (2022).
  18. Sweere, J. M., et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science (New York, N.Y.). 363 (6434), (2019).
  19. Fluckiger, A., et al. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science (New York, N.Y.). 369 (6506), 936-942 (2020).
  20. Majewska, J., et al. Induction of Phage-Specific Antibodies by Two Therapeutic Staphylococcal Bacteriophages Administered per os. Frontiers in Immunology. 10, 2607 (2019).
  21. Weiss, M., et al. In vivo replication of T4 and T7 bacteriophages in germ-free mice colonized with Escherichia coli. Virology. 393 (1), 16-23 (2009).
  22. Thomson, C. A., Morgan, S. C., Ohland, C., McCoy, K. D. From germ-free to wild: modulating microbiome complexity to understand mucosal immunology. Mucosal Immunology. 15 (6), 1085-1094 (2022).
  23. Al-Asmakh, M., Zadjali, F. Use of germ-free animal models in microbiota-related research. Journal of Microbiology and Biotechnology. 25 (10), 1583-1588 (2015).
  24. Ivanov, I. I., et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 139 (3), 485-498 (2009).
  25. Bonilla, N., et al. Phage on tap-a quick and efficient protocol for the preparation of bacteriophage laboratory stocks. PeerJ. 4, e2261 (2016).
  26. Sambrook, J., Russell, D. W. . Molecular Cloning: A Laboratory Manual. 1, (2001).
  27. Kropinski, A. M., Mazzocco, A., Waddell, T. E., Lingohr, E., Johnson, R. P. Enumeration of bacteriophages by double agar overlay plaque assay. Methods in Molecular Biology (Clifton, N.J). 501, 69-76 (2009).
  28. Manikantha, B., Karthika, R., Murugadas, V., Vishnuvinayagam, S., Rao, B. M. Comparison of the single agar and double agar layer methods for enumeration of bacteriophages. Fishery Technology. 59, 60-63 (2022).
  29. Sanders, E. R. Aseptic laboratory techniques: plating methods. Journal of Visualized Experiments. 63, e3064 (2012).
  30. Louten, J. Chapter 7 – Detection and diagnosis of viral infections. Essential Human Virology. , 111-132 (2016).
  31. Richter, &. #. 3. 2. 1. ;., et al. Adsorption of bacteriophages on polypropylene labware affects the reproducibility of phage research. Scientific Reports. 11 (1), 7387 (2021).
  32. . Amicon Ultra-15 Centrifugal Filter Devices Available from: https://www.emdmillipore.com/CA/en/product/Amicon-Ultra-15-Centrifugal-Filter-Unit (2018)
  33. Hecker, W., Witthauer, D., Staerk, A. Validation of dry heat inactivation of bacterial endotoxins. PDA Journal of Pharmaceutical Science and Technology. 48 (4), 197-204 (1994).
  34. Jakočiūnė, D., Moodley, A. A Rapid bacteriophage DNA extraction method. Methods and Protocols. 1 (3), 27 (2018).
  35. Zucoloto, A. Z., Yu, I. L., McCoy, K. D., McDonald, B. Generation, maintenance, and monitoring of gnotobiotic mice. STAR Protocols. 2 (2), 100536 (2021).
  36. Ng, K. M., et al. Single-strain behavior predicts responses to environmental pH and osmolality in the gut microbiota. mBio. 14 (4), e0075323 (2023).
  37. McCallum, G., Tropini, C. The gut microbiota and its biogeography. Nature Reviews. Microbiology. , (2023).
  38. Bergstrom, K., Xia, L. The barrier and beyond: Roles of intestinal mucus and mucin-type O-glycosylation in resistance and tolerance defense strategies guiding host-microbe symbiosis. Gut Microbes. 14 (1), 2052699 (2022).
  39. Askar, M., Ashraf, W., Scammell, B., Bayston, R. Comparison of different human tissue processing methods for maximization of bacterial recovery. European Journal of Clinical Microbiology & Infectious Diseases. 38 (1), 149-155 (2019).
  40. Redanz, S., Podbielski, A., Warnke, P. Improved microbiological diagnostic due to utilization of a high-throughput homogenizer for routine tissue processing. Diagnostic Microbiology and Infectious Disease. 82 (3), 189-193 (2015).
  41. Bhinder, G., et al. The Citrobacter rodentium mouse model: studying pathogen and host contributions to infectious colitis. Journal of Visualized Experiments. 72, e50222 (2013).
  42. Reyes, A., Semenkovich, N. P., Whiteson, K., Rohwer, F., Gordon, J. I. Going viral: next-generation sequencing applied to phage populations in the human gut. Nature Reviews Microbiology. 10 (9), 607-617 (2012).
  43. Camarillo-Guerrero, L. F., Almeida, A., Rangel-Pineros, G., Finn, R. D., Lawley, T. D. Massive expansion of human gut bacteriophage diversity. Cell. 184 (4), 1098-1109.e9 (2021).
  44. Reyes, A., et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature. 466 (7304), 334-338 (2010).
  45. Bach, M. S., et al. Filamentous bacteriophage delays healing of Pseudomonas-infected wounds. Cell Reports. Medicine. 3 (6), 100656 (2022).
  46. Filyk, H. A., Osborne, L. C. The multibiome: The intestinal ecosystem’s influence on immune homeostasis, health, and disease. EBioMedicine. 13, 46-54 (2016).
  47. Rohwer, F., Merry, Y., Maughan, H., Hisakawa, N. Heather Life in Our Phage World: A Centennial Field Guide to the Earth’s Most Diverse Inhabitants. Wholon. , (2014).
  48. Glonti, T., Pirnay, J. P. In Vitro techniques and measurements of phage characteristics that are important for phage therapy success. Viruses. 14 (7), 1490 (2022).
  49. Fraser, J. S., Yu, Z., Maxwell, K. L., Davidson, A. R. Ig-like domains on bacteriophages: a tale of promiscuity and deceit. Journal of Molecular Biology. 359 (2), 496-507 (2006).
  50. Li, H., et al. The outer mucus layer hosts a distinct intestinal microbial niche. Nature Communications. 6, 8292 (2015).
  51. Bergström, A., et al. Nature of bacterial colonization influences transcription of mucin genes in mice during the first week of life. BMC Research Notes. 5, 402 (2012).
  52. Adams, M. H. . Bacteriophages. , (1959).
  53. Kutter, E., Sulakvelidze, A. . Bacteriophages: Biology and Applications. , (2004).
  54. Bao, H., et al. Dysbiosis and intestinal inflammation caused by Salmonella Typhimurium in mice can be alleviated by preadministration of a lytic phage. Microbiological Research. 260, 127020 (2022).

Play Video

Citar este artigo
Pett, N., Hunter, M., Carranza García, N. A., Seo, J. H., Collins, S. R., Rohwer, F., Osborne, L. C., Tropini, C. T4 Bacteriophage and E. coli Interaction in the Murine Intestine: A Prototypical Model for Studying Host-Bacteriophage Dynamics In Vivo. J. Vis. Exp. (203), e65906, doi:10.3791/65906 (2024).

View Video