כאן, אנו מציגים את שיטת החישול המדומה האדפטיבית (ASAM) כדי למטב מודל משטח תגובה ריבועית משוערת (QRSM) המתאים למערכת ניהול חום סוללה מכוסה חומר חלקיקי מאובק ולמלא את ירידות הטמפרטורה בחזרה על ידי התאמת שילוב מהירויות זרימת האוויר של פתחי המערכת.
מחקר זה נועד לפתור את בעיית עליית טמפרטורת התא וירידה בביצועים הנגרמת על ידי חומר חלקיקי מאובק המכסה את פני התא באמצעות הקצאת מהירויות זרימת האוויר בפתחי תיבת הקירור של הסוללה במטרה של צריכת אנרגיה נמוכה. אנו לוקחים את הטמפרטורה המקסימלית של מארז הסוללות במהירות זרימת אוויר מוגדרת ובסביבה נטולת אבק כטמפרטורה הצפויה בסביבה מאובקת. הטמפרטורה המקסימלית של מארז הסוללות בסביבה מאובקת נפתרת במהירויות זרימת אוויר כניסה שונות, שהן תנאי הגבול של מודל הניתוח שנבנה בתוכנת הסימולציה. המערכים המייצגים את שילובי מהירויות זרימת האוויר השונים של כניסות נוצרים באופן אקראי באמצעות אלגוריתם ההיפרקובייה הלטינית האופטימלית (OLHA), כאשר הגבול התחתון והעליון של מהירויות המתאימות לטמפרטורות מעל הטמפרטורה הרצויה נקבעים בתוכנת האופטימיזציה. אנו קובעים QRSM משוער בין שילוב המהירות לטמפרטורה המקסימלית באמצעות מודול ההתאמה של תוכנת האופטימיזציה. ה- QRSM מותאם על בסיס ה- ASAM, והתוצאה האופטימלית תואמת היטב את תוצאת הניתוח המתקבלת על ידי תוכנת הסימולציה. לאחר האופטימיזציה, קצב הזרימה של הכניסה האמצעית משתנה מ-5.5 מטר לשנייה ל-5 מטר לשנייה, ומהירות זרימת האוויר הכוללת יורדת ב-3%. הפרוטוקול כאן מציג שיטת אופטימיזציה בו זמנית בהתחשב בצריכת האנרגיה והביצועים התרמיים של מערכת ניהול הסוללה שהוקמה, וניתן להשתמש בה באופן נרחב כדי לשפר את מחזור החיים של חבילת הסוללות עם עלות הפעלה מינימלית.
עם ההתפתחות המהירה של תעשיית הרכב, רכבי דלק מסורתיים צורכים הרבה משאבים שאינם מתחדשים, וכתוצאה מכך זיהום סביבתי חמור ומחסור באנרגיה. אחד הפתרונות המבטיחים ביותר הוא פיתוח כלי רכב חשמליים (EVs)1,2.
סוללות הכוח המשמשות לרכבים חשמליים יכולות לאגור אנרגיה אלקטרוכימית, שהיא המפתח להחלפת רכבי דלק מסורתיים. סוללות כוח המשמשות בכלי רכב חשמליים כוללות סוללת ליתיום-יון (LIB), סוללת ניקל-מתכת הידריד (NiMH) וקבל חשמלי דו-שכבתי (EDLC)3. בהשוואה לסוללות האחרות, סוללות ליתיום-יון נמצאות כיום בשימוש נרחב כיחידות אחסון אנרגיה ברכב חשמלי בשל יתרונותיהן כגון צפיפות אנרגיה גבוהה, יעילות גבוהה ומחזור חיים ארוך 4,5,6,7.
עם זאת, בשל חום התגובה הכימית וחום הג’אול, קל לצבור כמות גדולה של חום ולהעלות את טמפרטורת הסוללה במהלך טעינה מהירה ופריקה בעוצמה גבוהה. טמפרטורת ההפעלה האידיאלית של LIB היא 20-40 °C 8,9. הפרש הטמפרטורה המרבי בין הסוללות במחרוזת סוללה לא יעלה על 5°C10,11. אחרת, זה עלול להוביל לשורה של סיכונים כגון חוסר איזון טמפרטורה בין הסוללות, הזדקנות מואצת, אפילו התחממות יתר, אש, פיצוץ, וכן הלאה12. לכן, הבעיה הקריטית שיש לפתור היא תכנון ואופטימיזציה של מערכת ניהול תרמי יעילה של הסוללה (BTMS) שיכולה לשלוט בהפרש הטמפרטורה והטמפרטורה של מארז הסוללות בטווח צר.
BTMS טיפוסי כולל קירור אוויר, קירור מים וקירור חומרים לשינוי פאזה13. בין שיטות קירור אלה, סוג קירור האוויר נמצא בשימוש נרחב בגלל העלות הנמוכה שלה ואת הפשטות של המבנה14. בשל קיבולת החום הספציפית המוגבלת של האוויר, קל להתרחש הבדלי טמפרטורה גבוהים והבדלי טמפרטורה גדולים בין תאי הסוללה במערכות מקוררות אוויר. על מנת לשפר את ביצועי הקירור של BTMS מקורר אוויר, יש צורך לתכנן מערכת יעילה 15,16,17. Qian et al.18 אספו את הפרש הטמפרטורה והטמפרטורה המרבי של מארז הסוללות כדי לאמן את מודל הרשת העצבית הבייסיאנית המתאים, המשמש למיטוב ריווח התאים של מארז הסוללות מקורר האוויר בסדרה. Chen et al.19 דיווחו על שימוש בשיטת ניוטון ובמודל רשת התנגדות הזרימה לאופטימיזציה של רוחב מליאת סטיית הכניסה ומלאת התכנסות היציאה במערכת מקוררת אוויר מקבילית מסוג Z. התוצאות הראו ירידה של 45% בהפרש הטמפרטורה של המערכת. Liu et al.20 דגמו חמש קבוצות של צינורות קירור ב- J-BTMS והשיגו את השילוב הטוב ביותר של ריווח תאים על ידי אלגוריתם אופטימיזציה מבוסס אנסמבל חלופי. Baveja et al.21 מידלו מודול סוללה מאוזן באופן פסיבי, והמחקר תיאר את ההשפעות של חיזוי תרמי על איזון פסיבי ברמת המודול ולהיפך. Singh et al.22 חקרו מערכת ניהול תרמי של סוללות (BTMS) שהשתמשה בחומר שינוי פאזה עטוף יחד עם קירור אוויר קונבקטיבי מאולץ שתוכנן באמצעות מודלים אלקטרוכימיים-תרמיים מצומדים. Fan et al.23 הציעו לוח קירור נוזלי הכולל תצורת שסתום טסלה רב-שלבית כדי לספק טווח טמפרטורות בטוח יותר עבור סוללת ליתיום-יון מסוג פריזמטי עם זיהוי גבוה ביישומים מיקרופלואידים. Feng et al. 24 השתמשו בשיטת מקדם השונות כדי להעריך את התוכניות עם קצבי זרימת כניסה שונים ואישורי סוללות. Talele et al.25 הציגו בידוד תרמי משופר קיר של ציפוי פירו כדי לאחסן חימום פוטנציאלי שנוצר על בסיס מיקום אופטימלי של יריעות חימום.
כאשר משתמשים ב-BTMS לקירור אוויר, חלקיקי אבק מתכתיים, חלקיקי אבק מינרליים, חלקיקי אבק חומרי בניין וחלקיקים אחרים בסביבה החיצונית יובאו ל-BTMS קירור האוויר על ידי המפוח, מה שעלול לגרום לפני השטח של הסוללות להיות מכוסים ב-DPM. אם אין תוכנית לפיזור חום, הדבר עלול לגרום לתאונות עקב טמפרטורת הסוללה הגבוהה מדי. לאחר הסימולציה, אנו לוקחים את הטמפרטורה המקסימלית של מארז הסוללות במהירות זרימת אוויר מוגדרת ובסביבה נטולת אבק כטמפרטורה הצפויה בסביבה מאובקת. תחילה, C-rate מתייחס לערך הנוכחי הנדרש כאשר הסוללה משחררת את הקיבולת המדורגת שלה בתוך הזמן שצוין, השווה לכפולה של הקיבולת המדורגת של הסוללה בערך הנתונים. במאמר זה, הסימולציה משתמשת בפריקה בקצב 2C. הקיבולת הנקובה היא 10 Ah, והמתח הנומינלי הוא 3.2 V. ליתיום ברזל פוספט (LiFePO4) משמש כחומר האלקטרודה החיובי, ופחמן משמש כחומר האלקטרודה השלילי. האלקטרוליט מכיל מלח ליתיום אלקטרוליטי, ממס אורגני בעל טוהר גבוה, תוספים נחוצים וחומרי גלם אחרים. המערך האקראי המייצג את צירופי המהירויות השונים בכניסות נקבע באמצעות ה- OLHA, ופונקציה מסדר שני בין הטמפרטורה המרבית של מארז הסוללות לבין שילוב מהירות זרימת הכניסה נקבעה בתנאי של בדיקת דיוק התאמת העקומה. עיצובי היפרקוביה לטינית (LH) יושמו בניסויים ממוחשבים רבים מאז הוצעו על ידי McKay et al.26. LH נתון על ידי N x p-מטריצה L, כאשר כל עמודה של L מורכבת מתמורות של המספרים השלמים 1 עד N. במאמר זה, שיטת הדגימה הלטינית האופטימלית של היפרקובייה משמשת להפחתת הנטל החישובי. השיטה משתמשת בדגימה מרובדת כדי להבטיח שנקודות הדגימה יוכלו לכסות את כל הדגימה הפנימית.
בשלב הבא, שילוב מהירות זרימת הכניסה הותאם כדי להפחית את הטמפרטורה המקסימלית של מארז הסוללות בסביבה מאובקת המבוססת על ASAM בתנאי של התחשבות בצריכת האנרגיה בו זמנית. אלגוריתם החישול המדומה האדפטיבי פותח באופן נרחב ונמצא בשימוש נרחב בבעיות אופטימיזציה רבות27,28. אלגוריתם זה יכול להימנע מלהילכד באופטימום מקומי על ידי קבלת הפתרון הגרוע ביותר בהסתברות מסוימת. האופטימום העולמי מושג על ידי הגדרת הסתברות הקבלה והטמפרטורה; ניתן להתאים את מהירות החישוב גם באמצעות שני פרמטרים אלה. לבסוף, לצורך בדיקת דיוק האופטימיזציה, התוצאה האופטימלית הושוותה לתוצאת הניתוח שהתקבלה מתוכנת הסימולציה.
במאמר זה, מוצעת שיטת אופטימיזציה לקצב זרימת הכניסה של תיבת הסוללה עבור מארז הסוללות שהטמפרטורה שלו עולה עקב כיסוי אבק. המטרה היא להפחית את הטמפרטורה המקסימלית של מארז הסוללות המכוסה באבק אל מתחת לטמפרטורה המקסימלית של מארז הסוללות שאינו מכוסה אבק במקרה של צריכת אנרגיה נמוכה.
ה- BTMS המשמש במחקר זה הוקם על בסיס מערכת קירור האוויר בשל עלותו הנמוכה ופשטות המבנה. בגלל יכולת העברת החום הנמוכה, הביצועים של מערכת קירור האוויר נמוכים מאלה של מערכת קירור הנוזל ומערכת קירור חומרי שינוי פאזה. עם זאת, למערכת קירור הנוזל יש את החיסרון של דליפת נוזל קירור, ולמערכת קירור חומרי ש…
The authors have nothing to disclose.
תוכנות ניתוח ואופטימיזציה מסוימות נתמכות על ידי אוניברסיטת Tsinghua, אוניברסיטת Konkuk, האוניברסיטה הלאומית Chonnam, אוניברסיטת Mokpo ואוניברסיטת Chiba.
Ansys-Workbench | ANSYS | N/A | Multi-purpose finite element method computer design program software.https://www.ansys.com |
Isight | Engineous Sogtware | N/A | Comprehensive computer-aided engineering software.https://www.3ds.com |
NVIDIA GPU | NVIDIA | N/A | An NVIDIA GPU is needed as some of the software frameworks below will not work otherwise. https://www.nvidia.com |
Software | |||
SOLIDWORKS | Dassault Systemes | N/A | SolidWorks provides different design solutions, reduces errors in the design process, and improves product quality www.solidworks.com |