In diesem Artikel werden zwei Protokolle zur Beurteilung der Nahrungsquelle und der Eiablagepräferenzen bei Larven und Weibchen von Schmeißfliegen beschrieben. Diese umfassen vier Auswahlmöglichkeiten mit zwei interagierenden Faktoren: Substrattyp und Temperatur. Die Assays ermöglichen die Bestimmung der Nahrungsquellenpräferenz der Larven und der Eiablagepräferenz für die Weibchen.
Schmeißfliegen (Diptera: Calliphoridae) weisen eine breite Palette von Larvenlebensweisen auf, die typischerweise als obligater Parasitismus, fakultativer Parasitismus und vollständige Sapro-Nekrophagie klassifiziert werden. Mehrere parasitäre Arten, sowohl obligat als auch fakultativ, gelten als von hygienischer und wirtschaftlicher Bedeutung, da ihre Larven Myiasis (Madenbefall in lebendem Gewebe) verursachen können. Bemerkenswert ist jedoch, dass das erwachsene Weibchen bei der Wahl des Eiablageplatzes eine entscheidende Rolle spielt und damit maßgeblich das Fressverhalten und die Entwicklungsbedingungen der Larven bestimmt. In dieser Studie werden zwei Protokolle vorgeschlagen, um die Fresspräferenz der Larven und die Präferenz der weiblichen Eiablage unter Berücksichtigung zweier interagierender Faktoren zu testen: Fleischsubstrattyp und Temperatur. Die hier vorgestellten Versuchsanordnungen ermöglichten es, Lucilia cuprina-Larven und trächtige Weibchen in einem Vier-Auswahl-Assay mit zwei Temperaturen (33 ± 2 °C und 25 ± 2 °C) und zwei Arten von Fleischsubstraten (frisches Fleisch mit Blut und 5 Tage altes verdorbenes Fleisch) zu testen. Larven oder trächtige Weibchen können wählen, ob sie ihre Eier in einer der folgenden Sorten eingraben bzw. ablegen möchten: verdorbenes Fleisch bei 25 °C (simuliert einen nekrophagen Artenzustand), frisches Fleisch, das mit Blut bei 33 °C angereichert wird (simuliert einen parasitären Artzustand) und zwei Kontrollen, verdorbenes Fleisch bei 33 °C oder frisches Fleisch, das mit Blut bei 25 °C ergänzt wird. Die Präferenz wird bewertet, indem die Anzahl der Larven oder Eier gezählt wird, die in jeder Option für jedes Replikat gelegt wurden. Der Vergleich der beobachteten Ergebnisse mit einer Zufallsverteilung ermöglichte die Schätzung der statistischen Signifikanz der Präferenz. Die Ergebnisse deuten darauf hin, dass L. cuprina-Larven eine starke Präferenz für das verrottete Substrat bei 25 °C haben. Umgekehrt war die Präferenz der Weibchen für die Eiablage für die Fleischsorte unterschiedlicher. Diese Methodik kann angepasst werden, um die Präferenz anderer Insektenarten ähnlicher Größe zu testen. Auch andere Fragestellungen können unter Verwendung alternativer Bedingungen untersucht werden.
Fliegen, insbesondere Calyptrat-Muskoide (u.a. Schmeißfliegen, Stubenfliegen, Bot-Fliegen und Fleischfliegen), zeigen ein breites Spektrum an Lebensweisen, das parasitäre und nekro-saprophage Verhaltensweisen umfasst1. Parasitäre Arten verursachen typischerweise Myiasis, einen Befall von lebendem Gewebe durch Maden (Larven)2. In der Familie der Calliphoridae sind sowohl obligate als auch fakultative parasitäre Arten die Hauptursachen für wirtschaftliche Verluste und schlechtes Tierwohl aufgrund von Madenbefall 2,3,4,5,6,7. Besonders problematisch sind obligate Parasiten wie der Neuwelt- und der Altwelt-Schraubenwurm (Cochliomyia hominivorax bzw. Chrysomyia bezziana) 4,7,8,9,10 sowie fakultative Parasiten wie die Schafschmeißfliegen (Lucilia cuprina und Lucilia sericata)2,5,6, 7. Anmelden Nicht-parasitäre Arten, einschließlich sapro-nekrophager Arten, entwickeln sich in verrottender und nekrotischer organischer Substanz und sind häufig in unhygienischen Umgebungen zu finden. Ihre strikt nicht-parasitäre Lebensweise kann erfolgreich für die Madentherapie eingesetzt werden, bei der Fliegenlarven verwendet werden, um Wunden von nekrotischem Gewebe zu reinigen11,12,13. Schmeißfliegen werden auch in der Forensik eingesetzt, da sie zu den ersten Organismen gehören, die kürzlich verstorbene Leichen lokalisieren und besiedeln, wobei die sich entwickelnden Larven dazu dienen, den Todeszeitpunkt abzuschätzen14.
Die Lebensweise von Schmeißfliegen war aufgrund ihrer Bedeutung in Bezug auf menschliche Interessen Gegenstand verschiedener Forschungsstudien (z. B. 15,16,17,18,19,20,21). Das Verständnis der biologischen Mechanismen, die die Lebensweise einer Art steuern, kann wertvolle Erkenntnisse zur Verbesserung von Methoden zur Bekämpfung von Schädlingsarten liefern. Darüber hinaus bietet die Vielfalt und Evolution der Lebensweise von Schmeißfliegen einen idealen Kontext, um die Ursprünge und Mechanismen komplexer Merkmale (z.B. Parasitismus) zu untersuchen. Parasitismus durch Maden, die sich von lebendem Gewebe ernähren, hat sich innerhalb der Familie der Calliphoridae mehrmals unabhängig voneinander entwickelt22,23. Die Evolutionsgeschichte der Fressgewohnheiten von Schmeißfliegen ist jedoch noch weitgehend unbekannt, da sich die Studien darauf beschränken, die Gewohnheiten entlang der Phylogenien (z. B. 16,19,22) ohne die Hilfe von funktionellen Assays zu kartieren. Zum Beispiel ist es ungewiss, ob sich obligate Parasiten aus Generalisten (d.h. fakultativen Parasiten) oder direkt aus nekrophagen Arten entwickelt haben. Die molekularen, physiologischen und verhaltensbezogenen Prozesse, die mit den evolutionären Veränderungen des Lebensstils einhergehen, sind ebenfalls weitgehend unbekannt.
In diesem Zusammenhang bieten fakultative Parasiten, wie z.B. die Schafschmeißfliege Lucilia cuprina, die sich als Parasiten auf einem Wirt oder als Nekrophagen auf Kadavern entwickeln können, die Möglichkeit, die Faktoren und Mechanismen zu erforschen, die die Wahl des Lebensstils steuern. Lucilia cuprina ist eine kosmopolitische Art, die dafür bekannt ist, Schaffliegenbefall zu verursachen, insbesondere in Australien, wo sie als Schädling gilt 3,16. Myiasis durch L. cuprina kann auch bei anderen Nutztieren, Haustieren und Menschen auftreten 3,24,25,26,27,28,29,30. Ihre Larven können sich jedoch auch in nekrotischen Geweben und verwesender Materie entwickeln, und diese Art wurde erfolgreich in der forensischen Entomologie eingesetzt, da sie sehr schnell Leichen lokalisiert und besiedelt31,32,33,34. Obwohl die parasitäre vs. nicht-parasitäre Lebensweise von Schmeißfliegen durch das Larvenstadium definiert wird, ist es das erwachsene Weibchen, das den Eiablageplatz auswählt. Folglich beeinflusst das erwachsene Weibchen die Lebensweise der Larven stark, da diese in ihrer Beweglichkeit eingeschränkt sind. Die Wahl des Weibchens bedeutet jedoch nicht zwangsläufig, dass die Larven das gleiche Substrat bevorzugen würden, wenn sie die Wahl hätten35. Eine Hypothese ist, dass Verhaltensänderungen, die dazu führten, dass Weibchen ihre Eier auf lebendem Gewebe ablegten, Teil einer frühen Umstellung auf eine parasitäre Lebensweise gewesen sein könnten. Voranpassungen oder physiologische Fähigkeiten der entstehenden Larven wären für ihre erfolgreiche Entwicklung auf dem lebenden Gewebe unerlässlich gewesen, was zur Entstehung der parasitären Lebensweise geführt hätte. Daher müssen die betroffenen und ausgewählten Prozesse nicht unbedingt zwischen beiden Lebensphasen übereinstimmen.
In diesem Zusammenhang wurden zwei Methoden entwickelt, um die Verhaltenspräferenz von Schmeißfliegen, insbesondere für L. cuprina, in Bezug auf das Futtersubstrat der Larven (Larvenpräferenz-Assay) und den Eiablageort (weiblicher Präferenz-Assay) zu testen. Bei diesen Methoden werden zwei Faktoren berücksichtigt, die zusammenwirken: Temperatur und Frische des Fleisches. Die Temperatur wurde als entscheidender Faktor gewählt, da die meisten Fälle von Myiasis bei homöothermen Tieren auftreten2. Daher wurde eine Temperatur von 33 °C als Proxy für den “parasitären Lebensstilfaktor” gewählt, während eine Temperatur von 25 °C (Raumtemperatur) den “nicht-parasitären Faktor” darstellt. Es wurde eine Temperatur von 25 °C gewählt, da sie repräsentativ für die in Brasilien gemessene Jahresdurchschnittstemperatur ist (Nationales Institut für Meteorologie, INMET). Zusätzlich wurden zwei Arten von Fleischsubstraten in Betracht gezogen, die beide aus bovinen Quellen stammen: (i) frisches Fleisch, das mit Blut angereichert ist und das Substrat für die parasitäre Lebensweise nachahmt, das zur Aufzucht der parasitären Schmeißfliege Co. hominivorax unter Laborbedingungen verwendet wird36, und (ii) 5 Tage altes verdorbenes Fleisch, das das Substrat für die nekrophage Lebensweise nachahmt. Das Rindersubstrat wird üblicherweise für die Aufzucht von L. cuprina unter Laborbedingungenverwendet 27,37,38,39, da es mehrere Vorteile in Bezug auf Verfügbarkeit, Kosteneffizienz und Praktikabilität bietet und gleichzeitig ein ökologisch vertretbares Substrat ist. Andere Studien40,41, in denen die Wirkung von faulen und frischen Substraten bei Schmeißfliegen verglichen wurde, verwendeten 7 Tage altes, verrottetes Substrat (unter anaeroben Bedingungen) und zeigten eine nachteilige Wirkung des faulen Substrats auf die Entwicklungsraten, das Überleben und das Wachstum. Da L. cuprina dafür bekannt ist, frische Kadaver zu besiedeln, die normalerweise der Luft ausgesetzt sind, haben wir uns entschieden, 5 Tage altes verdorbenes Fleisch (Rinderhackfleisch) in nicht-hermetischen Töpfen (aerobe und anaerobe Zersetzung) zu verwenden, um ein nekrophages Substrat zu imitieren.
Die hier vorgestellten Versuchsdesigns bieten den Vorteil, dass sie sowohl für einzelne Faktoren als auch für deren kombinierte Effekte differenziert werden können. Darüber hinaus sind die bewerteten Phänotypen, d.h. die Wahl des Larvenfuttersubstrats und die Anzahl der gelegten Eier, direkt relevant für die biologischen und ökologischen Aspekte von Schmeißfliegenarten. Die Eignung dieser Protokolle wird durch den Nachweis ihrer Wirksamkeit bei L. cuprina unterstrichen. Darüber hinaus wird ein Skript für die statistische Analyse bereitgestellt, mit dem die beobachteten Ergebnisse von L. cuprina mit simulierten Zufallsdaten verglichen werden können, um eine robuste statistische Analyse und Interpretation zu gewährleisten.
Um die Evolution der Nahrungsgewohnheiten, insbesondere im Zusammenhang mit dem Parasitismus bei Schmeißfliegen, zu verstehen, ist es erforderlich, die Substratpräferenzen in verschiedenen Lebensstadien für die Nahrungsaufnahme oder Eiablage zu untersuchen. Daher wurden in dieser Studie robuste und einfache Methoden zur Untersuchung von Substratpräferenzen bei Larven und Weibchen von Schmeißfliegen vorgeschlagen. Diese Methoden wurden an Lucilia cuprina, einer fakultativen parasitären Schmeißfliege, getes…
The authors have nothing to disclose.
Wir danken Patrícia J. Thyssen, Gabriela S. Zampim und Lucas de Almeida Carvalho für die Bereitstellung der L. cuprina-Kolonie und für ihre Unterstützung bei der Einrichtung des Experiments. Wir möchten uns auch bei Rafael Barros de Oliveira für das Filmen und Schneiden des Videos bedanken. Diese Forschung wurde durch den Developing Nation Research Grant der Animal Behavior Society an V.A.S.C. und durch einen FAPESP Dimensions US-Biota-São Paulo Grant an T.T.T. (20/05636-4) unterstützt. S.T. und D.L.F. wurden durch ein FAPESP unterstützt (19/07285-7 Postdoktorandenstipendium bzw. 21/10022-8 PhD-Stipendium). V.A.S.C. und A.V.R. wurden durch CNPq-Promotionsstipendien unterstützt (141391/2019-7, 140056/2019-0). T.T.T. wurde von CNPq (310906/2022-9) unterstützt.
Agar | Sigma-Aldrich | 05038-500G | For microbiology |
Black cardboards | – | – | 70×50 cm |
Bovine blood with anticoagulat | – | – | 50% pure bovine blood with anticoagulant (3.8% sodium citrate) + 50% of filtered water |
Bovine ground Meat | – | – | Around 7-8% of fat |
Brush | – | – | Made with plastic |
Conical tube | Falcon or Generic | – | 50 mL |
Cross-shaped glass containers | Handmade | NA | 48×48 cm, 8 cm of height and 8 cm of width |
Erlenmeyer | Vidrolabor | NA | 500 mL |
70% Ethanol | Synth | A1084.01.BL | 70% ethyl ethanol absolute + 30% filtered water |
Graduated cylinder | Nalgon or Generic | – | 500 mL and 50 mL |
Heating pad | Thermolux | – | 30×40 cm dimensions, 40 W, 127 V |
Infrared thermometer | HeTaiDa | HTD8808 | Non-contact body thermometer (Sample Rate: 0.5 S, Accuracy: ±0.2 °C, Measuring: 5-15 cm) |
Petri dish (Glass) | Precision | NA | 150×20 mm dimensions |
(Note: the petri dishes can be plastic if used only once) | |||
Petri dish PS | Cralplast | 18130 | 60×15 mm dimensions |
Plastic Pasteur pipette | – | – | 3 mL (total volume) |
Sodium citrate | Synth | C11033.01.AG | 3.8% Sodium citrate (38 g diluted in 1L of filtered water) |
Spoons | – | – | More than one spoon is necessary. Use one for each type of meat substrate. Preferably stainless steel. |
Stainless steel spatula | Generic | – | Flat end and spoon end |
Stereomicroscope | Bioptika | – | WF10X/22 lenses |
Tweezer | – | – | Metal made and fine point |
White led light strips | NA | NA | 4.8 W, 2×0.05 mm², 320 lumens, Color temperature:6500 K (white) |