Qui, descriviamo un protocollo per l’applicazione di un singolo monostrato di grafene alle griglie di microscopia elettronica e come prepararle per l’uso nella determinazione della struttura crioEM.
La microscopia elettronica criogenica (cryoEM) è emersa come una potente tecnica per sondare la struttura atomica dei complessi macromolecolari. La preparazione del campione per cryoEM richiede la conservazione dei campioni in un sottile strato di ghiaccio vitreo, tipicamente sospeso all’interno dei fori di una pellicola di supporto fenestrata. Tuttavia, tutti gli approcci di preparazione del campione comunemente utilizzati per gli studi crioEM espongono il campione all’interfaccia aria-acqua, introducendo un forte effetto idrofobico sul campione che spesso si traduce in denaturazione, aggregazione e dissociazione complessa. Inoltre, le interazioni idrofobiche preferite tra le regioni del campione e l’interfaccia aria-acqua hanno un impatto sugli orientamenti adottati dalle macromolecole, dando luogo a ricostruzioni 3D con risoluzione direzionale anisotropa.
È stato dimostrato che l’adsorbimento di campioni crioEM a un monostrato di grafene aiuta a mitigare le interazioni con l’interfaccia aria-acqua, riducendo al minimo l’introduzione del rumore di fondo. I supporti in grafene offrono anche il vantaggio di ridurre sostanzialmente la concentrazione richiesta di proteine necessarie per l’imaging crioEM. Nonostante i vantaggi di questi supporti, le griglie rivestite di grafene non sono ampiamente utilizzate dalla comunità crioEM a causa dei costi proibitivi delle opzioni commerciali e delle sfide associate alla produzione interna su larga scala. Questo documento descrive un metodo efficiente per la preparazione di lotti di griglie crioEM che hanno una copertura quasi completa di grafene monostrato.
La microscopia elettronica criogenica a singola particella (cryoEM) è una tecnologia sempre più applicabile utilizzata per studiare le strutture 3D delle biomacromolecole. I progressi tecnologici nell’ottica del microscopio elettronico, nel rilevamento diretto di elettroni1 e negli algoritmi informatici 2,3,4 nell’ultimo decennio hanno permesso agli utenti di cryoEM di determinare le strutture di complessi macromolecolari biochimicamente stabili con una risoluzione quasi atomica 5,6,7,8 . Nonostante questi progressi, permangono notevoli ostacoli alla conservazione dei campioni per l’imaging crioEM, che impediscono alla maggior parte dei campioni biologici di essere risolti a risoluzioni così elevate.
La preparazione del campione per l’analisi crioEM ad alta risoluzione comporta l’intrappolamento di macromolecole distribuite uniformemente in un’ampia gamma di orientamenti all’interno di un sottile strato di ghiaccio vetrificato. I metodi di congelamento “blot and plunge” sono i metodi più utilizzati per generare film sottili di campioni biologici su griglie per studi crioEM 9,10. Questi metodi prevedono l’applicazione di alcuni microlitri di soluzione campione a una griglia EM contenente un film fenestrato che è stato reso idrofilo e successivamente l’eliminazione della maggior parte del campione con carta da filtro prima di immergere rapidamente la griglia in un criogeno di etano liquido o miscela di etano e propano9.
Sebbene questo metodo sia stato utilizzato con successo per determinare le strutture di un’ampia gamma di campioni biologici, tutti i metodi di preparazione dei campioni crioEM comunemente usati espongono i campioni all’interfaccia aria-acqua idrofobica (AWI), che spesso introduce problemi che limitano la determinazione della struttura ad alta risoluzione. È stato stabilito che i campioni biologici hanno un’elevata propensione alla denaturazione se esposti all’AWI, che può portare a complesse aggregazioni e disassemblaggi11,12,13,14. Inoltre, le macchie idrofobiche sulle superfici dei campioni biologici fanno sì che le particelle adottino orientamenti preferenziali nel ghiaccio12. In molti scenari, una singola regione idrofobica del campione costringe tutte le particelle ad adottare un orientamento singolare nel ghiaccio, abolendo così la capacità di generare una ricostruzione affidabile. Oltre ai problemi con l’AWI, i campioni possono dimostrare un’affinità per la superficie dello strato fenestrato di pellicola, limitando il numero di particelle sospese nel ghiaccio all’interno dei fori15.
Diverse soluzioni metodologiche e tecnologiche sono state sviluppate per ridurre questi problemi derivanti dalle interazioni con l’AWI o i film16,17. Un approccio popolare è quello di rivestire il film fenestrato delle griglie EM con un sottile strato (decine di nanometri) di carbonio amorfo. Questo rivestimento fornisce una superficie continua attraverso i fori a cui le particelle possono adsorbirsi, con il vantaggio di schermare parzialmente il campione dalle interazioni con l’AWI15,18,19,20. Tuttavia, lo strato di carbonio aggiuntivo aumenta la quantità di segnale di fondo nelle regioni riprese, introducendo rumore che può compromettere la risoluzione raggiungibile, in particolare per campioni di piccole dimensioni (<150 kDa). Negli ultimi anni, l'uso di scaglie di ossido di grafene (GO) per produrre film di supporto su griglie crioEM ha dimostrato di avere vantaggi rispetto al carbonio amorfo tradizionale. I fiocchi di GO sono prodotti attraverso l'ossidazione di strati di grafite, dando luogo a fogli pseudocristallini di grafite monostrato che sono idrofili a causa del loro notevole contenuto di ossigeno sotto forma di gruppi carbossilici, ossidrilici ed epossidici sulle superfici e sui bordi. I fiocchi di GO commerciali in sospensione acquosa sono poco costosi e ci sono numerosi metodi pubblicati per applicare i fiocchi di GO alle griglie EM18,21. Tuttavia, questi metodi spesso si traducono in griglie che sono solo parzialmente coperte da fiocchi di GO, nonché regioni che contengono più strati di scaglie di GO. Inoltre, i fiocchi di GO contribuiscono con un notevole segnale di fondo alle immagini crioEM che è vicino a quello osservato con il carbonio amorfosottile 22,23.
Il grafene monostrato incontaminato, che consiste in una singola matrice cristallina 2D di atomi di carbonio, si distingue dal GO in quanto non produce contrasto di fase al microscopio elettronico. Il grafene monostrato può quindi essere utilizzato per generare uno strato di supporto invisibile per l’imaging di campioni biologici. Il grafene monostrato è anche più resistente del GO e può essere applicato come singolo monostrato su una griglia EM e i recenti progressi nella fabbricazione di griglie EM rivestite di grafene hanno reso possibile la preparazione interna di griglie di grafene monostrato ad alta copertura 24,25,26,27,28,29,30 . Tuttavia, nonostante i vantaggi dell’utilizzo di griglie rivestite di grafene per la determinazione della struttura crioEM, non sono ampiamente utilizzate a causa dei costi proibitivi delle opzioni commerciali e della complessità della produzione interna. Qui, descriviamo una guida passo passo per produrre efficacemente griglie EM ricoperte da un monostrato di grafene per la determinazione della struttura crioEM di campioni biologici (Figura 1). Seguendo questo protocollo dettagliato, i ricercatori di cryoEM possono preparare in modo riproducibile dozzine di griglie di supporto del grafene di alta qualità in un solo giorno. La qualità delle griglie rivestite di grafene può essere facilmente esaminata utilizzando un microscopio elettronico a trasmissione (TEM) di fascia bassa dotato di un filamento LaB6.
La conservazione di campioni biologici in un sottile strato di ghiaccio vitreo è un passaggio di fondamentale importanza per la determinazione della struttura crioEM ad alta risoluzione. Tuttavia, i ricercatori incontrano spesso problemi derivanti dalle interazioni con l’AWI, che introduce l’orientamento preferenziale, il disassemblaggio complesso, la denaturazione e l’aggregazione. Inoltre, i campioni non possono sempre essere concentrati a sufficienza per popolare il sottile ghiaccio sospeso attraverso i fori di una pellicola fenestrata. Diversi gruppi di ricerca hanno sviluppato metodi per rivestire le griglie EM con un monostrato di grafene per aiutare a superare alcune di queste limitazioni 24,25,26,27,28,29,30 e le griglie di grafene sono state utilizzate con grande successo. Qui, forniamo istruzioni dettagliate per preparare efficacemente lotti di griglie di grafene internamente ed esaminare la qualità delle griglie di grafene mediante TEM. Sottolineiamo che è necessario prestare particolare attenzione durante alcuni dei passaggi critici, che descriviamo di seguito.
Il grafene ha una forte tendenza ad attirare i contaminanti presenti nell’aria. Pertanto, durante il processo di fabbricazione della griglia di grafene, è importante assicurarsi che tutti gli strumenti che entrano in contatto con il foglio di grafene/Cu o le griglie siano puliti e privi di polvere. I vetrini coprioggetto utilizzati per trasferire il grafene possono essere puliti risciacquando con etanolo e acqua deionizzata o utilizzando uno spolverino ad aria. Si consiglia inoltre di lavorare sotto una cappa aspirante e di tenere sempre i fogli e le griglie di grafene coperti con un foglio di alluminio o una lastra di vetro pulita. Polvere o contaminanti sulle griglie possono impedire al grafene di aderire completamente alle griglie EM. Quando si maneggiano griglie rivestite di grafene o grafene, è importante essere collegati a terra elettricamente per evitare danni al film di grafene dovuti a scariche elettrostatiche. Le scariche elettrostatiche possono essere evitate utilizzando una cinghia di messa a terra da polso, toccando un oggetto metallico collegato a terra ogni volta che si maneggiano grafene o griglie di grafene e/o non indossando un guanto sulla mano che tiene le pinzette24.
Poiché un monostrato di grafene è molto sottile (la larghezza di un atomo di carbonio), è importante supportare il grafene con uno strato organico come MMA o poli-MMA (PMMA) durante il trasferimento del grafene alle griglie. Il PMMA è il materiale più utilizzato per il trasferimento del grafene. Tuttavia, il PMMA ha una forte affinità con il grafene e spesso può provocare la contaminazione del polimero sul film di grafene. L’MMA viene utilizzato in questo protocollo, in quanto lascia meno contaminazione residua25. Tuttavia, sia il PMMA che l’MMA hanno lo svantaggio di formare rughe e crepe che possono essere osservate in alcune aree del film di grafene (Figura 3B). Può essere difficile evitare queste rughe poiché si verificano comunemente durante la crescita del grafene con il metodo CVD31. Recentemente è stato sviluppato un metodo per la coltivazione di grafene ultrapiatto senza rughe, in cui la lamina di rame viene sostituita da un wafer di Cu(111)/zaffiro come substrato di crescita32.
Sulla base della nostra esperienza, è meglio acquistare fogli di grafene/Cu e supportare il grafene con MMA internamente piuttosto che acquistare fogli di rame ricoperti di polimeri dai produttori, che diventano fragili dopo l’incisione su rame e sono difficili da maneggiare nelle fasi successive. Lo spin coater che abbiamo usato per il rivestimento MMA può essere costruito a basso costo utilizzando parti di un negozio di computer/ferramenta locale, come descritto in precedenza25.
Durante la fase del rivestimento MMA, è importante coprire l’intera superficie del grafene sul foglio di grafene Cu con MMA. Dopo che il Cu è stato inciso, il grafene MMA diventerà semitrasparente e le aree prive di copertura MMA appariranno come fori vuoti. Per evitare il rivestimento MMA sul lato del rame, è importante posizionare un piccolo pezzo di carta assorbente sotto di esso durante il rivestimento in modo che assorba l’MMA in eccesso che fuoriesce dalla pellicola CVD.
Dopo l’incisione e il risciacquo, il foglio MMA/grafene è pronto per essere trasferito alle griglie EM utilizzando un sistema di abbeveratoio commerciale o fatto in casa con una siringa o una pompa peristaltica per controllare il livello dell’acqua. Prima della fase di trasferimento, è importante presciacquare accuratamente le griglie in bagni successivi di cloroformio, acetone e alcool isopropilico. La cottura di griglie rivestite di grafene a 65 °C aiuta a preservare l’integrità del grafene e promuove l’adsorbimento del grafene alle griglie. Infine, per prevenire la contaminazione da MMA sulle griglie, è importante rimuovere accuratamente l’MMA in un bagno di acetone e pulire le griglie in alcool isopropilico. Eventuali residui di MMA non lavati saranno osservati sulle griglie EM e diminuiranno il rapporto segnale/rumore delle immagini (Figura 3C). Il processo di lavaggio acetone-IPA può essere ripetuto per pulire ulteriormente le superfici in grafene.
Per rendere idrofile le griglie di grafene, abbiamo esposto le griglie ai raggi UV/ozono. Diversi modelli di detergenti UV/ozono possono richiedere un’ottimizzazione per ossigenare sufficientemente lo strato di grafene per la preparazione del campione crioEM senza danneggiare il grafene. Indipendentemente dal sistema, è fondamentale utilizzare queste griglie per l’applicazione di campioni crioEM subito dopo il trattamento UV/Ozono. Metodi alternativi per rendere idrofile le griglie di grafene sono descritti in altri studi33,34.
The authors have nothing to disclose.
Ringraziamo il Dr. Xiao Fan per le utili discussioni durante la definizione di questi metodi presso Scripps Research. B.B. è stato sostenuto da una borsa di ricerca post-dottorato della Hewitt Foundation for Medical Research. W.C. è supportato da una borsa di studio pre-dottorato della National Science Foundation. Il D.E.P. è supportato dalla sovvenzione del National Institutes of Health (NIH) NS095892 a G.C.L. Questo progetto è stato sostenuto anche dalle sovvenzioni NIH GM142196, GM143805 e S10OD032467 a G.C.L.
70% EtOH | Pharmco (190 pf EtOH) | 241000190CSGL | |
Acetone | Sigma Aldrich | 650501-4L | |
Ammonium persulfate (APS) | Sigma Aldrich | 215589-500g | Hazardous; use extreme caution |
Chloroform | Sigma Aldrich | C2432-1L | |
Clamping TEM Grid Holder Block for 45 Grids | PELCO | 16830-45 | |
Computer fan | Amazon (Noctua) | B07CG2PGY6 | |
Cover slip | Bellco Glass | 1203J71 | Standard cover slips |
Crystallizing dish | Pyrex | 3140-100 | |
Electronics duster | Falcon Safety Products | 75-37-6 | |
Falcon Dust-off Air Duster | Staples | N/A | |
Filter papers | Whatman | 1001-055 | |
Fine tip tweezer | Dumont | 0508-L4-PO | |
Flask | Pyrex | 4980-500 | |
Fork | Supermarket | N/A | |
Glass pasteur pipette | VWR | 14672-608 | |
Graphene/Cu | Graphenea | N/A | CVD monolayer graphene cu |
Grid Coating Trough | Ladd Research Industries | 10840 | Fragile |
Isopropanol | Fisher Scientific | 67-63-0 | |
Kapton Tape | Amazon (MYJOR) | MY-RZY001 | Polyimide tape |
Kimwipes | Fisher Scientific | 06-666 | |
Long twzeer | Cole Parmer Essentials | UX-07387-15 | |
Metal grid holder | Ted Pella | 16820-81 | |
MMA(8.5)MMA EL 6 | KAYAKU Advanced Materials | M31006 0500L 1GL | Flammable |
Model 10 Lab Oven | Quincy Lab, Inc. | FO19013 | |
Petri dish | Pyrex | 3610-102 | |
Plasma cleaner (Solarus 950) | Gatan, Inc. | N/A | |
Scissors | Fiskars | 194813-1010 | |
Standard Analog Orbital Shaker | VWR | 89032-088 | |
UltrAuFoil R1.2/1.3 – Au300 | Quantifoil | N/A | Holey gold grids |
Ultraviolet Ozone Cleaning Systems | UVOCS | model T10X10/OES |