在这里,我们描述了一种将单层石墨烯应用于电子显微镜网格的方案,以及如何准备它们以用于冷冻电镜结构测定。
低温电子显微镜(cryoEM)已成为探测大分子复合物原子结构的有力技术。冷冻电镜的样品制备需要将标本保存在一层薄薄的玻璃冰中,玻璃冰通常悬浮在开窗支撑膜的孔内。然而,冷冻电镜研究的所有常用样品制备方法都将样品暴露在空气-水界面下,对样品产生强烈的疏水作用,通常会导致变性、聚集和复杂的解离。此外,样品区域和空气-水界面之间优选的疏水相互作用会影响大分子采用的取向,从而产生具有各向异性方向分辨率的 3D 重建。
冷冻电镜标本吸附在单层石墨烯上已被证明有助于减轻与空气-水界面的相互作用,同时最大限度地减少背景噪声的引入。石墨烯载体还具有大幅降低冷冻电镜成像所需蛋白质浓度的优点。尽管这些支架具有优势,但由于商业选择的高昂费用以及与大规模内部生产相关的挑战,石墨烯涂层网格并未被冷冻电镜社区广泛使用。本文描述了一种制备几乎完全覆盖单层石墨烯的冷冻电镜网格的有效方法。
单颗粒低温电子显微镜(cryoEM)是一种越来越适用的技术,用于研究生物大分子的三维结构。在过去十年中,电子显微镜光学、直接电子检测1 和计算机算法 2,3,4 的技术进步使冷冻电镜用户能够以近原子分辨率确定生化稳定的大分子复合物的结构 5,6,7,8 .尽管取得了这些进展,但保存冷冻电镜成像样本仍然存在明显的障碍,这阻碍了大多数生物样本被解析到如此高分辨率。
高分辨率冷冻电镜分析的样品制备涉及捕获大分子,这些大分子在玻璃化冰薄层中以各种方向均匀分布。冷冻的“印迹和浸入式”方法是用于在网格上生成生物样品薄膜的最广泛使用的方法,用于冷冻电镜研究9,10。这些方法包括将几微升样品溶液涂在含有亲水性开窗膜的电磁网格上,然后用滤纸吸干大部分样品,然后迅速将网格放入液态乙烷或乙烷-丙烷混合物的制冷剂中9。
虽然该方法已成功用于确定各种生物标本的结构,但所有常用的冷冻电镜标本制备方法都将标本暴露在疏水性空气-水界面 (AWI) 中,这通常会引入限制高分辨率结构测定的问题。已经确定,生物标本在暴露于AWI时具有很高的变性倾向,这可能导致复杂的聚集和拆卸11,12,13,14。此外,生物标本表面的疏水斑块导致颗粒在冰中采用首选方向12。在许多情况下,样品的单个疏水区域迫使所有颗粒在冰中采用单一方向,从而消除了产生可靠重建的能力。除了AWI的问题外,标本还可能表现出对开窗薄膜层表面的亲和力,从而限制了悬浮在孔内冰中的颗粒数量15。
已经开发了几种方法和技术解决方案,以减少与AWI或电影互动引起的这些问题16,17。一种流行的方法是在EM网格的开窗膜上涂上一层薄薄的(数十纳米)无定形碳。该涂层在颗粒可以吸附的孔中提供了一个连续的表面,其优点是可以部分屏蔽样品免受与AWI15,18,19,20的相互作用。然而,额外的碳层会增加成像区域中的背景信号量,引入噪声,从而影响可达到的分辨率,特别是对于小型(<150 kDa)样品。近年来,使用氧化石墨烯(GO)薄片在冷冻电镜网格上生产支撑膜已被证明比传统的无定形碳具有优势。GO薄片是通过石墨层的氧化产生的,产生单层石墨的假结晶片,由于其表面和边缘以羧基、羟基和环氧基团的形式含有大量的氧,因此具有亲水性。水悬浮液中的商业GO薄片价格低廉,并且有许多已发表的方法可用于EM网格18,21。然而,这些方法通常会导致网格仅部分被 GO 薄片覆盖,以及包含多层 GO 薄片的区域。此外,GO薄片为冷冻电镜图像提供了明显的背景信号,该信号接近于用薄的无定形碳22,23观察到的背景信号。
原始的单层石墨烯由单个碳原子的二维晶体阵列组成,与GO的不同之处在于它不会在电子显微镜下产生相差。因此,单层石墨烯可用于生成用于生物样品成像的不可见支撑层。单层石墨烯也比GO更强,可以作为单层应用于EM网格上,石墨烯涂层EM网格制造的最新进展使得在内部制备高覆盖率的单层石墨烯网格成为可能24,25,26,27,28,29,30.然而,尽管使用石墨烯涂层网格进行冷冻电镜结构测定有好处,但由于商业选择的高昂费用和内部生产的复杂性,它们并未被广泛使用。在这里,我们描述了一个分步指南,以有效生产覆盖有单层石墨烯的电磁网格,用于生物标本的冷冻电镜结构测定(图1)。通过遵循这一详细的方案,cryoEM研究人员可以在一天内可重复地制备数十个高质量的石墨烯支撑网格。使用配备有 LaB6 灯丝的低端透射电子显微镜 (TEM) 可以很容易地检查石墨烯涂层网格的质量。
将生物样品保存在薄薄的玻璃冰层中是高分辨率冷冻电镜结构测定的关键步骤。然而,研究人员经常会遇到与 AWI 相互作用引起的问题,AWI 引入了首选方向、复杂的拆卸、变性和聚集。此外,样品不能总是足够浓缩,以填充悬浮在开窗薄膜孔上的薄冰。一些研究小组已经开发出用单层石墨烯涂覆电磁网格的方法,以帮助克服其中一些限制24,25,26,27,28,29,30,并且石墨烯网格已经取得了巨大的成功。在这里,我们提供了在内部有效制备石墨烯网格批次并通过TEM检查石墨烯网格质量的分步说明。我们强调,在一些关键步骤中应特别小心,我们将在下面概述这些步骤。
石墨烯具有很强的吸引空气污染物的倾向。因此,在石墨烯网格制造过程中,重要的是要确保所有与石墨烯/铜片或网格接触的工具都是清洁无尘的。用于转移石墨烯的玻璃盖玻片可以通过用乙醇和去离子水冲洗或使用空气除尘器进行清洁。还建议在通风橱下工作,并始终用箔纸或干净的玻璃板覆盖石墨烯片和网格。网格上的灰尘或污染物可能会阻止石墨烯完全粘附在电磁网格上。在处理石墨烯或石墨烯涂层的网格时,重要的是电气接地,以防止静电放电损坏石墨烯薄膜。通过使用手腕接地带,每次处理石墨烯或石墨烯网格时触摸接地的金属物体和/或在握住镊子的手上不戴手套,可以避免静电放电24.
由于石墨烯的单层非常薄(碳原子的宽度),因此在石墨烯向网格的转移过程中,用有机层(如MMA或poly-MMA(PMMA))支撑石墨烯非常重要。PMMA是石墨烯转移使用最广泛的材料。然而,PMMA与石墨烯有很强的亲和力,往往会导致石墨烯薄膜上的聚合物污染。MMA用于该协议,因为它留下的残留污染物较少25。然而,PMMA和MMA的缺点是形成皱纹和裂缝,可以在石墨烯薄膜的某些区域观察到(图3B)。避免这些皱纹可能具有挑战性,因为它们通常发生在石墨烯生长过程中,通过CVD方法31。最近开发了一种生长无皱纹超平石墨烯的方法,其中铜箔被Cu(111)/蓝宝石晶片作为生长基板32取代。
根据我们的经验,最好购买石墨烯/铜片并在内部用MMA支撑石墨烯,而不是从制造商那里购买聚合物覆盖的铜石墨烯片,后者在铜蚀刻后会变脆,并且在后续步骤中难以处理。如前所述,我们用于 MMA 涂层的旋涂机可以使用当地计算机/五金店的零件廉价地制造25.
在MMA涂层的步骤中,重要的是用MMA覆盖Cu-石墨烯片上的整个石墨烯表面。铜被蚀刻掉后,MMA-石墨烯将变得半透明,缺乏MMA覆盖的区域将看起来像空洞。为了防止铜侧的MMA涂层,重要的是在涂层过程中在其下方放置一小块吸墨纸,以便吸收从CVD薄膜中旋转出来的任何多余的MMA。
蚀刻和冲洗后,MMA/石墨烯片可以使用带有注射器或蠕动泵的商用或自制槽系统来控制水位,从而准备好转移到电磁网格中。在转移步骤之前,重要的是在氯仿、丙酮和 IPA 的连续浴中彻底预冲洗网格。在65°C下烘烤石墨烯涂层的网格有助于保持石墨烯的完整性,并促进石墨烯对网格的吸附。最后,为了防止 MMA 污染网格,重要的是在丙酮浴中彻底去除 MMA 并在 IPA 中清洁网格。将在EM网格上观察到任何未洗涤的MMA残留物,并降低图像的信噪比(图3C)。可以重复丙酮-IPA洗涤过程,以进一步清洁石墨烯表面。
为了使石墨烯网格具有亲水性,我们将网格暴露在紫外线/臭氧下。不同型号的紫外线/臭氧清洗剂可能需要优化,以便在不损坏石墨烯的情况下为石墨烯层充分氧化,用于冷冻电镜样品制备。无论使用何种系统,在紫外线/臭氧处理后立即将这些网格用于冷冻电镜样品应用至关重要。使石墨烯网格亲水的替代方法在其他研究中进行了描述33,34。
The authors have nothing to disclose.
我们感谢Xiao Fan博士在Scripps Research建立这些方法时进行的有益讨论。B.B.得到了休伊特医学研究基金会的博士后研究奖学金的支持。W.C.得到了美国国家科学基金会博士前奖学金的支持。D.E.P得到了美国国立卫生研究院(NIH)对G.C.L.NS095892的资助。该项目还得到了 NIH 对 GCL GM142196、GM143805 和S10OD032467的资助。
70% EtOH | Pharmco (190 pf EtOH) | 241000190CSGL | |
Acetone | Sigma Aldrich | 650501-4L | |
Ammonium persulfate (APS) | Sigma Aldrich | 215589-500g | Hazardous; use extreme caution |
Chloroform | Sigma Aldrich | C2432-1L | |
Clamping TEM Grid Holder Block for 45 Grids | PELCO | 16830-45 | |
Computer fan | Amazon (Noctua) | B07CG2PGY6 | |
Cover slip | Bellco Glass | 1203J71 | Standard cover slips |
Crystallizing dish | Pyrex | 3140-100 | |
Electronics duster | Falcon Safety Products | 75-37-6 | |
Falcon Dust-off Air Duster | Staples | N/A | |
Filter papers | Whatman | 1001-055 | |
Fine tip tweezer | Dumont | 0508-L4-PO | |
Flask | Pyrex | 4980-500 | |
Fork | Supermarket | N/A | |
Glass pasteur pipette | VWR | 14672-608 | |
Graphene/Cu | Graphenea | N/A | CVD monolayer graphene cu |
Grid Coating Trough | Ladd Research Industries | 10840 | Fragile |
Isopropanol | Fisher Scientific | 67-63-0 | |
Kapton Tape | Amazon (MYJOR) | MY-RZY001 | Polyimide tape |
Kimwipes | Fisher Scientific | 06-666 | |
Long twzeer | Cole Parmer Essentials | UX-07387-15 | |
Metal grid holder | Ted Pella | 16820-81 | |
MMA(8.5)MMA EL 6 | KAYAKU Advanced Materials | M31006 0500L 1GL | Flammable |
Model 10 Lab Oven | Quincy Lab, Inc. | FO19013 | |
Petri dish | Pyrex | 3610-102 | |
Plasma cleaner (Solarus 950) | Gatan, Inc. | N/A | |
Scissors | Fiskars | 194813-1010 | |
Standard Analog Orbital Shaker | VWR | 89032-088 | |
UltrAuFoil R1.2/1.3 – Au300 | Quantifoil | N/A | Holey gold grids |
Ultraviolet Ozone Cleaning Systems | UVOCS | model T10X10/OES |