여기에서 우리는 배양에서 특정 시상하부 세포 아형을 성장시키기 위한 프로토콜을 제시합니다. 세포는 적절한/고유한 막 마커를 기반으로 선택할 수 있으며 면역형광, 전기생리학 및 생화학적 분석을 포함한 많은 응용 분야에서 사용할 수 있습니다.
시상하부는 음식 섭취, 체온 및 호르몬 방출과 같은 다양한 기능을 제어하여 기본적인 대사 과정을 조절합니다. 시상하부의 기능은 뉴런 집단의 특정 하위 집합에 의해 제어되기 때문에 이들을 분리하는 능력은 대사 메커니즘을 연구하기 위한 주요 도구를 제공합니다. 이와 관련하여 시상 하부의 신경 복잡성은 예외적 인 문제를 제기합니다.
이러한 이유로 MACS(Magnetic-Activated Cell Sorting)와 같은 새로운 기술이 연구되었습니다. 이 논문은 마이크로비드 기술을 사용하여 태아기 생쥐의 뇌에서 표적 뉴런 집단을 분리하는 자기 활성화 세포 분류(MACS)의 새로운 응용에 대해 설명합니다. 이 기술은 간단하며 높은 재현성으로 매우 순수하고 실행 가능한 1차 시상하부 뉴런 배양을 보장합니다. 시상 하부는 부드럽게 해리되고, 뉴런은 선택적으로 분리되어 신경교 세포로부터 분리되고, 마지막으로 세포 표면 마커에 대한 특이 항체를 사용하여 관심있는 집단이 선택된다.
일단 분리되면 표적 뉴런을 사용하여 형태학적, 전기적, 내분비 특성과 정상 또는 병리학적 상태에서의 반응을 조사할 수 있습니다. 또한, 섭식, 신진대사, 스트레스, 수면 및 동기 부여를 조절하는 시상하부의 다양한 역할을 감안할 때, 표적 및 지역별 뉴런을 자세히 살펴보면 이 복잡한 환경에서 그들의 작업에 대한 통찰력을 얻을 수 있습니다.
시상하부는 섭식, 신진대사, 수면, 체온, 사회적 행동, 성욕 1,2,3,4,5를 포함한 내분비, 자율, 내장 및 행동 기능을 매개하는 뇌의 다각적인 영역입니다. 기능적 이질성은 생화학적 및 전기적 메커니즘의 시너지 조합에 의해 달성됩니다: 시상하부 뉴런은 활동 전위를 발화하고 신체의 뇌 영역과 기관을 조절하기 위해 호르몬과 신경 펩티드를 분비 및 방출합니다. 마지막으로, 시상 하부 뉴런은 신체의 항상성 메시지를 번역하여 장기 및 단기 피드백 및 피드 포워드 규정으로 반응합니다6.
시상 하부의 복잡한 신경 환경에는 옥시토신과 바소프레신을 방출하는 마그 노세포 내분비 뉴런이 포함됩니다. 주로 전신 호르몬 조절에 관여하는 파보세포 뉴런, 예를 들어 갑상선 자극 호르몬 방출 호르몬(TRH) 및 부신피질 자극 호르몬 방출 호르몬(CRH)을 뇌하수체로 방출합니다. 오렉신 및 멜라닌 농축 호르몬(MCH)을 방출하는 큰 펩티드성 투영 뉴런; 및 각각 ARC POMC 및 ARCAgRP로 명명된POMC(proopiomelanocortin) 및 AgRP(아구티 관련 단백질)를 방출하는 ARC 핵(ARC)의 파보세포 펩티드성 뉴런. 분비 세포와 함께, 도파민성 뉴런, 글루타민성 뉴런, GABA 성 뉴런7을 포함한 다른 흥분성 및 억제성 뉴런은 시상하부 내 및 시상하부 외 회로를 형성하는 데 관여하며, 이에 따라 상당한 세포 이질성8의 대규모 조정 네트워크를 형성한다.
시상 하부 다양성은 연구자들이 지난 50 년 동안 극복하려고 노력해 온 도전이었습니다. 시상하부의 발달, 성숙 및 노화에서 이러한 이질성을 연구하기 위해 연구자들은 한편으로는 단일 세포 RNA 시퀀싱을 사용하여 신경 조직과 분자 및 전사체 시그니처를 탐색해 왔습니다. 이러한 노력은 시상하부 뉴런의 다양한 역할에 대한 통찰력 있는 시각을 제공했으며 세포 정체성과 생리학적 시스템에서 가능한 역할 사이의 연결을 다루었습니다 8,9,10. 다른 한편으로, 신경 기능은 광유전학적 조작과 섬유 측광 행동 접근법에 의해 조사되어 회로 구조를 면밀히 관찰할 수 있습니다. 지난 20년 동안 Cre-recombinase 기술은 연구자들이 행동과 신체 반응의 변화를 관찰하면서 표적화된 뉴런 그룹을 존재유전학적으로 자극하거나 억제할 수 있게 해주었습니다 6,11,12.
그러나 이러한 접근 방식은 복잡한 시상하부 환경 내에서의 역할에 대한 특정 세포 메커니즘이나 생물학적 기초에 대해 더 깊이 파고들지 않고 일반적인 관점에서 시상하부 기능을 검사합니다. 이를 해결하기 위해 이질적인 일차 시상하부 배양을 활용한 분자, 생화학 및 전기적 특성을 조사하는 데 초점을 맞춘 연구는 거의 없습니다. 이 연구는 복잡한 환경에서 특정 신경 과정을 해부하고 생리적 메커니즘의 통합 모델을 생성했습니다13,14,15. 그럼에도 불구하고 비특정 문화는 중대한 문제를 제기합니다. 예를 들어, 뉴런의 생리적 연결성과 해부학적 분포는 일반적으로 상호 작용하지 않는 다른 시상하부 영역의 뉴런을 도금하여 교란 효과를 일으켜 방해를 받습니다. 또한 각 지역은 역할이 다르고 다양한 신경 집단을 가지고 있어 단순한 생물학적 과정을 연구하기 어렵습니다.
이러한 문제를 해결하기 위해 지난 10년 동안 면역 패닝, FACS(Fluorescent-Activated-Cell-Sorting) 및 MACS(Magnetic-Activated-Cell-Sorting)와 같은 관심 뉴런을 분리하기 위한 새로운 접근 방식이 구현되었습니다. 면역패닝은 일련의 비뉴런(음성) 및 뉴런(양성) 선택을 위해 항체 코팅 접시를 사용하여 표적 세포를 정제하는 데 사용되는 전략입니다. 이 기술은 원칙적으로 고수율 정제 세포 배양을 생성할 수 있지만, 실제로는 성상교세포와 희소돌기아교세포가 몇 시간의 조작에 저항할 수 있기 때문에 주로 사용됩니다16,17. FACS 기술은 유세포 분석 18,19,20을 사용하여 형광 마커 및 세포 특성을 기반으로 세포를 분류하는 강력한 도구입니다. 그러나 세포 배양을 위해 세포를 분리하기 위해 이 방법을 사용한 연구는 거의 없습니다. 이 기술은 비용이 많이 들고 사용 및 유지 관리에 고도로 숙련된 인력이 필요합니다. 추가적으로, 분류 절차(21)의 끝에서 생존 가능하고 멸균된 세포를 유지하는 것은 도전적이다. 전반적으로, MACS는 시상 하부 일차 뉴런의 매우 순수하고 실행 가능한 배양을 얻기위한 간단하고 비용이 들지 않는 기술로 보입니다. 이 방법은 항체를 통해 세포에 연결된 자성 비드를 이용한다. 이를 통해 컬럼의 자기장을 사용하여 셀을 분리할 수 있습니다.
여기에서는 일반적으로 피질 뉴런과 함께 사용되는 MACS 기술을 기반으로 하는 방법을 설명합니다. 이 프로토콜은 원칙적으로 생존 가능하고 매우 순수한 시상 하부 뉴런을 분리 할 수 있습니다. 본 연구에서는 ARCPOMC 및 ARCAgRP 뉴런과 같이 Arcuate Nucleus에만 존재하는 Leptin Receptor(LepR)를 발현하는 뉴런의 1차 배양을 준비합니다. 이 뉴런은 지방 조직에서 분비되는 식욕 부진 호르몬인 렙틴에 생화학적 및 전기적 방식으로 반응합니다. 따라서 배양에서 이 뉴런 그룹을 분리하면 체외에서 호르몬, 대사 및 전기적 특성을 연구할 수 있습니다.
시상하부 뉴런의 생화학적 및 전기적 특성을 조사하는 것은 신진대사, 체온 조절, 기분 관리, 섭식 행동 등의 분자적 기초를 이해하는 데 중요합니다. 그러나 시상하부의 신경 이질성은 이러한 노력을 어렵게 만들고 특정 시상하부 하위 집단을 분리하고 연구하는 방법이 필요합니다.
생체 내 기술은 CRE-재조합효소, 광유전학, 섬유 광도 측정 및 칼슘 이미징을 사용합니다. 이러한 접근법은 주로 시상 하부 뉴런의 전기적 특성을 연구 할 수 있으며, 현재 비 전기적 특성을 조사하는 데 사용할 수있는 방법은 거의 없습니다. 이 연구에서 개발된 MACS 기술은 시험관 내에서 특정 시상하부 신경 하위 집단을 분리할 수 있는 기술을 제공하여 표적 치료 및 분석을 제공할 수 있습니다. 뉴런 배양은 다른 뉴런 집단의 공동 배양에 비해 관리가 더 간단합니다. 또한 순수 배양은 아교세포와 미세아교세포의 존재로 인한 교란 효과를 피합니다. 따라서 동일한 시상 하부 영역과 유형의 뉴런은 특정 대사 및 호르몬 입력에 대한 반응으로 연구 될 수 있습니다.
이 프로토콜에서 우리는 LepR을 발현하는 시상하부 뉴런을 선택했습니다. 분리된 LepR+ 세포를 배양하여 생체 내에서 연구하기 어려운 세포, 형태학적 및 분자적 특성을 조사했습니다.배양의 순도는 99%로 방법의 정확성을 뒷받침했습니다. 또한, LepR+ 세포는 DIV21까지 DIV7에서 건강하고 생존 가능했습니다.
그러나 이 기술에는 몇 가지 제한 사항이 있습니다. E18 이상의 순수 뉴런 배양은 유지하기가 어렵습니다. 따라서 추출 창은 E14-E16으로 제한됩니다. 이것은 E16 이후에 발생하는 세포 변화가 누락되었음을 의미합니다. 예를 들어, ARC 뉴런에서 렙틴 수용체의 발현은 출생 후 초기 기간 동안 증가한다22. 분리 절차는 세포 스트레스와 사망을 줄이고 수율을 향상시키기 위해 가능한 한 빨리 수행되어야합니다. 절차는 최대 5시간이 소요될 수 있습니다. 따라서 멸균 상태를 유지하고 필요한 최소한으로 조작을 줄이는 것이 필수적입니다. 양성 선택은 사용 가능한 조직의 양이 적기 때문에 수율이 낮아져 단일 제제로 수행할 수 있는 실험 횟수가 제한될 수 있습니다. 상승된 뉴런 사멸이 관찰되었는데, 아마도 낮은 세포 밀도와 감소된 뉴런 연결성 및 뉴런 내 지지로 인한 것입니다.
또한, 관심 항원을 표적으로 하는 항체는 정확한 분리를 보장하기 위해 세포 표면에 결합해야 합니다. 일반적으로 유세포 분석에 사용되는 항체는 MACS 기술에 적합합니다. 항체가 이전에 세포 분리 방법에 사용된 적이 없는 경우, 이상적인 용도와 농도를 결정하기 위해 검증 및 적정 실험이 필요합니다. 표적 세포를 추출하려면 세포 표면 마커가 필요합니다. 여기서는 비오티닐화 항체를 사용했지만 원칙적으로 FITC(플루오레세인 이소티오시아네이트) 및 PE(정제된 항-피코에리트린)와 같은 다른 분자와 접합된 항체도 사용할 수 있습니다. MACS 기술은 GFP 또는 다른 Tag 단백질과 같은 형광단을 발현하는 뉴런에도 적용되어 잠재적으로 특이성과 수율을 증가시킬 수 있습니다. 형광단을 사용하지 않는 경우 대안은 생세포 실험을 수행하기 전에 면역형광법으로 관심 분자의 발현을 확인하는 것입니다. 향후 연구에서는 이러한 대안의 타당성을 테스트할 것입니다.
이 연구가 다루지 않은 한 가지 중요한 측면은 하위 뉴런 집단의 “충실도”에 관한 것입니다. 우리는 배양된 LepR+ 뉴런이 천연 ARCPOMC 뉴런의 시그니처인 POMC를 발현한다는 것을 확인했습니다. 그러나 LepR+ 뉴런 배양이 생체 내 고유 대응물을 요약한다는 결론을 내리기 위해서는 더 많은 테스트가 필요할 것입니다. 전반적으로, 여기에 제시된 MACS 신경 분리 프로토콜은 생체 내에서 조사하기 어려운 시험관 내 시상하부 메커니즘을 연구하는 타당하고 효과적인 방법을 제공할 수 있습니다.
The authors have nothing to disclose.
그래픽 그림은 BioRender.com 로 만들어졌습니다. 이 작업은 FS에 대한 NIA 보조금(R01AG060919)과 NSF 보조금(2030348)의 지원을 받았습니다.
Embryo extraction | |||
1 curved point forceps | Fine Science Tools | 11270-20 | Dumont |
1 fine surgical scissor | Fine Science Tools | 14058-11 | Dumont |
100 mm Petri dish | Corning | 430167 | |
2 straight fine forceps | Fine Science Tools | 11254-20 | Dumont |
60 mm Petri dish | Corning | 430196 | |
70% ethanol | Decon Laboratories, INC. | 2801 | Ethanol 190 Proof |
Anti-Biotin MicroBeads 1mL | Miltenyi Biotec | 130-115-390 | |
Anti-MAP2 antibody | Abcam | ab5392 | 1 : 800 |
Bench pads | |||
Bovine Serum Albumin | Sigma-Aldrich | A9418-50G | |
Buffer Y | Miltenyi Biotec | 130-094-802 | |
Buffer Z | Miltenyi Biotec | 130-094-802 | |
Cell Culture | |||
Anti-Biotin MicroBeads 1mL | Miltenyi Biotec | 130-115-390 | |
Bovine Serum Albumin | Sigma-Aldrich | A9418-50G | |
Buffer Y | Miltenyi Biotec | 130-094-802 | |
Buffer Z | Miltenyi Biotec | 130-094-802 | |
Enzyme A | Miltenyi Biotec | 130-094-802 | |
Enzyme P | Miltenyi Biotec | 130-094-802 | |
GG-12-1.5, 12 mm dia.#1.5 thick 100 pc cell culture tested German coverglasses | Neuvitro Corporation | GG-12-15 | |
Gibco B-27 Supplement 10 mL | ThermoFisher | 17504-044 | |
Gibco Basal Medium Eagle (BME) 500 mL | ThermoFisher | 21010046 | (+) Earle's Salts, (-) L-Glutamine |
Gibco HBBS (1x) Hanks' Balanced Salt Solution 500 mL | ThermoFisher | 14025092 | Calcium, Magnesium, No phenol red |
Gibco HI FBS 100 mL | ThermoFisher | 16140-063 | |
Gibco L-Glutamine 200 mM (100x) | ThermoFisher | 25030-081 | |
Gibco Penicilline/Streptomicine | ThermoFisher | 15140-122 | 10,000 U/mL |
Gibco Sodium Pyruvate (100 mM) 100 mL | ThermoFisher | 11360070 | |
MiniMACS Separator and Starting Kit | Miltenyi Biotec | 130-042-102 | |
Mouse Leptin R Biotinylated Antibody | R&D Systems | ABAF497 | 0.25 μg/106 cells |
MS Column | Miltenyi Biotec | 130-042-201 | |
Neaubeaur-Improved Brightline 100 µm Chamber | Hausser Scientific | 3120 | |
Neural Tissue Dissociation Kit – Postnatal Neurons | Miltenyi Biotec | 130-094-802 | |
Neuronal Culture Medium 500 mL | ThermoFisher | 88283 | |
Non-Neuronal Cell Biotin-Antibody Cocktail mouse 1 mL | Miltenyi Biotec | 130-115-389 | |
Olympus SZ61 Zoom Stereomicroscope | Olympus Life Science | SZ61/SZ51 | |
Pierce Primary Neuron Isolation Kit | ThermoFisher | 88280Y | |
Staining | |||
Anti-MAP2 antibody | Abcam | ab5392 | 1 : 800 |
Donkey anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor Plus 488 | ThermoFisher | A32766 | 1 : 500 |
Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor Plus 488 | ThermoFisher | A32790 | 1 : 500 |
Dulbecco's Phosphate Buffered Saline (DPBS) | Sigma Aldrich | MFCD00131855 | |
Goat anti-Chicken IgY (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor Plus 647 | ThemoFisher | A32933 | 1 : 500 |
Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 594 | ThermoFisher | A11037 | 1 : 200 |
Invitrogen Leptin Receptor Recombinant Rabbit Monoclonal Antibody (JA73-01) | ThermoFisher | MA5-32685 | 1 : 500 |
Mouse Leptin R Biotinylated Antibody | R&D Systems | ABAF497 | 1 : 500 |
POMC Rabbit mAb | Cell Signaling Technology | D3R1U | 1 : 500 |
PSD95 (D74D3) XP Rabbit mAb | Cell Signaling Technology | D74D3#3409 | 1 : 500 |
Streptavidin, Alexa Fluor 594 conjugate | ThermoFisher | S11227 | 1 : 500 |
Synapsin 1 Monoclonal Antibody (7H10G6) | ThermoFisher | MA5-31919 | 1 : 500 |
Vectashield Plus Antifade Mountina Medium with DAPI 10 mL | Vector Laboratories | H-2000 |