Le plan expérimental présenté ici fournit un modèle de reproduction utile pour les études des lymphocytes T CD8+ spécifiques de l’antigène au cours des métastases ganglionnaires (LN), ce qui exclut la perturbation des lymphocytes T CD8+ témoins.
Les lymphocytes T CD8+ spécifiques de l’antigène tumoral provenant des ganglions lymphatiques drainants gagnent en importance dans l’augmentation de la réponse immunitaire antitumorale au cours de la tumorigenèse. Cependant, dans de nombreux cas, les cellules cancéreuses forment des loci métastatiques dans les ganglions lymphatiques avant de métastaser davantage dans des organes distants. On ne sait pas dans quelle mesure les réponses locales et systématiques des lymphocytes T CD8+ ont été influencées par les métastases de LN. À cette fin, nous avons mis en place un modèle murin de métastases LN combiné à une lignée cellulaire de mélanome B16F10-GP exprimant le néoantigène de substitution dérivé du virus de la chorioméningite lymphocytaire (LCMV), la glycoprotéine (GP) et les souris transgéniques P14 hébergeant des récepteurs de lymphocytes T (TCR) spécifiques au peptide GP dérivé de la GP33-41 présenté par la molécule du complexe majeur d’histocompatibilité (CMH) de classe I H-2Db. Ce protocole permet d’étudier les réponses des lymphocytes T CD8+ spécifiques à l’antigène au cours des métastases de LN. Dans ce protocole, des souris C57BL/6J ont été implantées par voie sous-cutanée avec des cellules B16F10-GP, suivies d’un transfert adoptif avec des cellules P14 naïves. Lorsque la tumeur sous-cutanée atteignait environ 5 mm de diamètre, la tumeur primaire était excisée et les cellules B16F10-GP étaient directement injectées dans le ganglion lymphatique drainant la tumeur (TdLN). Ensuite, la dynamique des lymphocytes T CD8+ a été surveillée pendant le processus de métastase de LN. Collectivement, ce modèle a fourni une approche permettant d’étudier avec précision les réponses immunitaires des lymphocytes T CD8+ spécifiques à l’antigène pendant les métastases de LN.
L’immunothérapie du cancer, en particulier le blocage des points de contrôle immunitaires (ICB), a révolutionné le traitement du cancer1. L’ICB bloque les immunorécepteurs co-inhibiteurs (tels que-1, Tim-3, LAG-3 et TIGIT), qui sont fortement exprimés dans les lymphocytes T CD8+ épuisés dans le microenvironnement tumoral (TME), ce qui entraîne la revigoration des lymphocytes T CD8+ épuisés2. Compte tenu de l’hétérogénéité des lymphocytes T CD8+ épuisés, l’accumulation de preuves a révélé que les lymphocytes T CD8+ spécifiques à la tumeur dérivés de la périphérie, y compris les ganglions lymphatiques drainants (dLN), mais pas dans les EUT, médient l’efficacité de l’ICB 3,4,5,6,7,8. Récemment, il a été confirmé que les lymphocytes T CD8+ mémoires spécifiques à la tumeur TCF-1+TOX dérivés de TdLN (TdLN-TTSM) étaient les véritables répondeurs aux ICB qui incarnent plusieurs propriétés fonctionnelles des lymphocytes T mémoires conventionnels et pourraient se développer et se différencier en cellules épuisées par la descendance lors du traitement par ICB9. Dans l’ensemble, ces résultats ont corroboré l’importance de LN dans le renforcement de l’immunité antitumorale.
Les ganglions lymphatiques fonctionnent comme un endroit critique pour faciliter l’amorçage et l’activation des lymphocytes T CD8+ spécifiques à la tumeur en fournissant une base structurelle ainsi que des signaux biologiques10. Plusieurs types de cellules cancéreuses ensemencent fréquemment le ganglion sentinelle (SLN, le premier LN drainant une tumeur primaire) avant une dissémination systématique11. La présence de métastases SLN est liée à un mauvais pronostic dans le cancer humain et les modèles précliniques ont montré que les cellules tumorales du TdLN pouvaient se propager à des organes distants à la fois par les vaisseaux lymphatiques et les vaisseaux sanguins du ganglion 12,13,14,15. La biopsie SLN représente désormais une procédure standard pour guider les décisions de traitement ultérieures dans de nombreux types de tumeurs solides, ce qui pourrait éviter une résection inutile de LN16,17 non impliquée. Même pour les LN concernés, la question de savoir si et quand une résection chirurgicale est nécessaire reste controversée, car plusieurs études ont démontré que l’ablation de LN régionale n’a pas amélioré la survie globale par rapport à ceux qui ont reçu une radiothérapie ou une thérapie systémique sans résection régionaleLN 18,19. Une interprétation est que le LN métastatique (mLN) avec une maladie microscopique peut conserver une certaine capacité à éduquer les cellules immunitaires et à fournir certains avantages thérapeutiques. Il est donc extrêmement important d’élucider comment les métastases LN affectent la réponse immunitaire anti-tumorale, en particulier les propriétés et les fonctions de TdLN-TTSM.
Jusqu’à présent, les données précliniques et cliniques ont révélé certaines altérations structurelles et cellulaires du mLN20. Cependant, les changements dynamiques des lymphocytes T CD8+ spécifiques à la tumeur au cours des métastases LN n’ont pas été délimités. Par conséquent, le développement d’un modèle convaincant de métastases LN est nécessaire pour une étude plus approfondie. En effet, plusieurs études ont rapporté des modèles murins de mLN de différentes manières 14,21,22. Par exemple, des métastases spontanées dans les LN axillaires ont été conduites par l’implantation de cellules cancéreuses du sein 4T1 dans le coussinet adipeux mammaire22. Dans une autre étude, Reticker-Flynn et al. ont généré des lignées cellulaires de mélanome avec une incidence élevée de propagation de la tumeur primaire sous-cutanée aux LN par inoculation en série de cellules tumorales cultivées à partir de tissus mLN dissociés (neuf tours)14. Un autre modèle couramment utilisé a été préparé par l’injection de cellules tumorales dans le coussinet plantaire et les loci métastatiques seraient formés dans le LN22 poplité. Notamment, il est difficile d’évaluer les moments précis de l’intervention car les métastases LN dans ces modèles ne sont pas toujours fidèles.
Dans la présente étude, un modèle métastatique murin de LN a été établi par injection intraganglionnaire de cellules B16F10-GP23,24, générées par l’insertion médiée par CRISPR/Cas9 de la séquence du gène de la glycoprotéine (GP) du virus LCMV dans le génome de la lignée cellulaire 9 de B16F10. Ensuite, ces souris ont été transférées avec des cellules P14 qui hébergent des récepteurs de lymphocytes T transgéniques (TCR) reconnaissent spécifiquement l’épitope H-2Db GP33-41 25,26 et la dynamique systémique et locale des lymphocytes T CD8+ spécifiques de l’antigène pendant les métastases LN a pu être étudiée. Notre conception expérimentale fournit un modèle utile pour l’étude des réponses immunitaires, en particulier des lymphocytes T CD8+ spécifiques de l’antigène pendant la métastase LN, ce qui exclut la perturbation des lymphocytes T CD8+ témoins. Ces résultats affecteraient les options de traitement clinique de l’élimination ou de la conservation du LNm et jetteraient un nouvel éclairage sur la manipulation du LNm pour obtenir des avantages thérapeutiques maximaux.
Au cours de la tumorigenèse, les cellules présentatrices d’antigènes (APC) engloutissent les antigènes tumoraux et migrent vers le TdLN où elles amorcent les lymphocytes T CD8+. Après amorçage et activation, les lymphocytes T CD8+ quittent le TdLN et s’infiltrent dans la tumeur pour tuer les cellules tumorales10. Grâce à la résection du TdLN et à l’administration de FTY720 qui bloquent la sortie des cellules immunitaires des organes lymphoïdes, plusieurs ét…
The authors have nothing to disclose.
Ce travail a été soutenu par la Fondation nationale des sciences pour les jeunes chercheurs exceptionnels de Chine (n° 82122028 à LX), la Fondation nationale des sciences naturelles de Chine (n° 82173094 à LX), la Fondation des sciences naturelles de Chong Qing (n° 2023NSCQ-BHX0087 à SW).
1.5 mL centrifuge tube | KIRGEN | KG2211 | |
100 U insulin syringe | BD Biosciences | 320310 | |
15 mL conical tube | BEAVER | 43008 | |
2,2,2-Tribromoethanol (Avertin) | Sigma | T48402-25G | |
2-Methyl-2-butanol | Sigma | 240486-100ML | |
70 μm nylon cell strainer | BD Falcon | 352350 | |
APC anti-mouse CD45.1 | BioLegend | 110714 | Clone:A20 |
B16-GP cell line | Beijing Biocytogen Co.Ltd, China | Custom | |
BSA-V (bovine serum albumin) | Bioss | bs-0292P | |
cell culture dish | BEAVER | 43701/43702/43703 | |
centrifuge | Eppendorf | 5810R-A462/5424R | |
cyclophosphamide | Sigma | C0768-25G | |
Cyclophosphamide (CTX) | Sigma | PHR1404 | |
Dulbecco's Modified Eagle Medium | Gibco | C11995500BT | |
EDTA | Sigma | EDS-500g | |
FACS tubes | BD Falcon | 352052 | |
fetal bovine serum | Gibco | 10270-106 | |
flow cytometer | BD | FACSCanto II | |
hemocytometer | PorLab Scientific | HM330 | |
isoflurane | RWD life science | R510-22-16 | |
KHCO3 | Sangon Biotech | A501195-0500 | |
LIVE/DEAD Fixable Near-IR Dead Cell Stain Kit, for 633 or 635 nm excitation | Life Technologies | L10199 | |
needle carrier | RWD Life Science | F31034-14 | |
NH4Cl | Sangon Biotech | A501569-0500 | |
paraformaldehyde | Beyotime | P0099-500ml | |
PE anti-mouse TCR Vα2 | BioLegend | 127808 | Clone:B20.1 |
Pen Strep Glutamine (100x) | Gibco | 10378-016 | |
PerCP/Cy5.5 anti-mouse CD8a | BioLegend | 100734 | Clone:53-6.7 |
RPMI-1640 | Sigma | R8758-500ML | |
sodium azide | Sigma | S2002 | |
surgical forceps | RWD Life Science | F12005-10 | |
surgical scissors | RWD Life Science | S12003-09 | |
suture thread | RWD Life Science | F34004-30 | |
trypsin-EDTA | Sigma | T4049-100ml |